Transmission Structured Illumination Microscopy for Quantitative Phase and Scattering Imaging

被引:4
作者
Wen, Kai [1 ]
Ma, Ying [1 ]
Liu, Min [1 ]
Li, Jianlang [1 ]
Zalevsky, Zeev [2 ,3 ]
Zheng, Juanjuan [1 ]
机构
[1] Xidian Univ, Sch Phys & Optoelect Engn, Xian, Peoples R China
[2] Bar Ilan Univ, Fac Engn, Ramat Gan, Israel
[3] Bar Ilan Univ, Nano Technol Ctr, Ramat Gan, Israel
基金
中国国家自然科学基金;
关键词
quantitative phase microscopy; structured illumination; phase gradient; resolution enhancement; multimodality imaging; RESOLUTION ENHANCEMENT; SUPERRESOLUTION; CONTRAST; LIGHT; INTERFEROMETRY; RETRIEVAL;
D O I
10.3389/fphy.2020.630350
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper, we demonstrate a digital micromirror device (DMD) based optical microscopic apparatus for quantitative differential phase contrast (qDIC) imaging, coherent structured illumination microscopy (SIM), and dual-modality (scattering/fluorescent) imaging. For both the qDIC imaging and the coherent SIM, two sets of fringe patterns with orthogonal orientations and five phase-shifts for each orientation, are generated by a DMD and projected on a sample. A CCD camera records the generated images in a defocusing manner for qDIC and an in-focus manner for coherent SIM. Both quantitative phase images and super-resolved scattering/fluorescence images can be reconstructed from the recorded intensity images. Moreover, fluorescent imaging modality is integrated, providing specific biochemical structures of the sample once using fluorescent labeling.
引用
收藏
页数:7
相关论文
共 35 条
[1]   Two-wavelength in-line phase-shifting interferometry based on polarizing separation for accurate surface profiling [J].
Abdelsalam, D. G. ;
Kim, Daesuk .
APPLIED OPTICS, 2011, 50 (33) :6153-6161
[2]   Quantitative retardance imaging of biological samples using quadriwave lateral shearing interferometry [J].
Aknoun, Sherazade ;
Bon, Pierre ;
Savatier, Julien ;
Wattellier, Benoit ;
Monneret, Serge .
OPTICS EXPRESS, 2015, 23 (12) :16383-16406
[3]   Synthetic aperture fourier holographic optical microscopy [J].
Alexandrov, Sergey A. ;
Hillman, Timothy R. ;
Gutzler, Thomas ;
Sampson, David D. .
PHYSICAL REVIEW LETTERS, 2006, 97 (16)
[4]   Linear phase imaging using differential interference contrast microscopy [J].
Arnison, MR ;
Larkin, KG ;
Sheppard, CJR ;
Smith, NI ;
Cogswell, CJ .
JOURNAL OF MICROSCOPY-OXFORD, 2004, 214 (01) :7-12
[5]   Quadriwave lateral shearing interferometry for quantitative phase microscopy of living cells [J].
Bon, Pierre ;
Maucort, Guillaume ;
Wattellier, Benoit ;
Monneret, Serge .
OPTICS EXPRESS, 2009, 17 (15) :13080-13094
[6]  
Born M, 2013, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light, DOI [10.1017/CBO9781139644181, DOI 10.1017/CBO9781139644181]
[7]   Structured illumination diffraction phase microscopy for broadband, subdiffraction resolution, quantitative phase imaging [J].
Chowdhury, Shwetadwip ;
Izatt, Joseph .
OPTICS LETTERS, 2014, 39 (04) :1015-1018
[8]   Axially-offset differential interference contrast microscopy via polarization wavefront shaping [J].
Ding, Changqin ;
Li, Chen ;
Deng, Fengyuan ;
Simpson, Garth J. .
OPTICS EXPRESS, 2019, 27 (04) :3837-3850
[9]   Super-Resolution Imaging of Plasmodesmata Using Three-Dimensional Structured Illumination Microscopy [J].
Fitzgibbon, Jessica ;
Bell, Karen ;
King, Emma ;
Oparka, Karl .
PLANT PHYSIOLOGY, 2010, 153 (04) :1453-1463
[10]   A METHOD FOR ENFORCING INTEGRABILITY IN SHAPE FROM SHADING ALGORITHMS [J].
FRANKOT, RT ;
CHELLAPPA, R .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 1988, 10 (04) :439-451