Controlled Hydrothermal Synthesis of Zirconium Oxide Nanostructures and Their Optical Properties

被引:197
作者
Kumari, Latha [1 ]
Li, W. Z. [1 ]
Xu, J. M. [2 ]
Leblanc, R. M. [2 ]
Wang, D. Z. [3 ]
Li, Yi [4 ]
Guo, Haizhong [4 ]
Zhang, Jiandi [4 ]
机构
[1] Florida Int Univ, Dept Phys, Miami, FL 33199 USA
[2] Univ Miami, Dept Chem, Coral Gables, FL 33124 USA
[3] Boston Coll, Dept Phys, Chestnut Hill, MA 02467 USA
[4] Louisiana State Univ, Dept Phys & Astron, Baton Rouge, LA 70803 USA
基金
美国国家科学基金会;
关键词
ELECTRONIC-STRUCTURE; NANO-COMPOSITE; ZRO2; XPS; FILMS; DEPOSITION; POWDERS;
D O I
10.1021/cg800711m
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Zirconium oxide (ZrO2 or zirconia) nanostructures were synthesized by it hydrothermal route. Surface morphology analysis depicts the formation of various zirconia nanostructures at different Synthesis conditions, X-ray diffraction examination demonstrates that the as-synthesized zirconia is of pure monoclinic phase (m-ZrO2). High resolution transmission electron microscopy (HRTEM) further confirms the high crystalline feature of the m-ZrO2 nanostructures. X-ray photoelectron Spectroscopy (XPS) core-level spectra of Zr 3d and O 1s for the ZrO2 nanostructures have been studied to understand further the electronic states and chemical environment of the Zr and O atoms in ZrO2 for different synthesis conditions. XPS results also indicate the existence of oxygen defects and zirconia suboxides Which affect the structural and optical properties of zirconia nanostructures. The nanostructures show UV-vis absorption band around 290 nm at room temperature. The band gap energy is determined, in the range of 2.5-3.8 eV for zirconia nanostructures synthesized at various conditions. A broad emission band with maximum intensity at around 400 nm is observed in the photoluminescence (PL) spectra of zirconia nanostructures at room temperature depicting the violet emission, which can be attributed to the ionized oxygen vacancy in the material.
引用
收藏
页码:3874 / 3880
页数:7
相关论文
共 48 条
[1]  
BAGNALL DM, 1998, J CRYST GROWTH, V605, P184
[2]  
Blasse G., 1994, LUMINESCENT MAT, P1, DOI [10.1007/978-3-642-79017-1_1, DOI 10.1007/978-3-642-79017-1_1, 10.1007/978-3-642-79017-11, DOI 10.1007/978-3-642-79017-11]
[3]   XPS study of amorphous zirconium oxide films prepared by sol-gel [J].
Brenier, R ;
Mugnier, J ;
Mirica, E .
APPLIED SURFACE SCIENCE, 1999, 143 (1-4) :85-91
[4]   Hydrothermal technology for nanotechnology [J].
Byrappa, K. ;
Adschiri, T. .
PROGRESS IN CRYSTAL GROWTH AND CHARACTERIZATION OF MATERIALS, 2007, 53 (02) :117-166
[5]   Synthesis and room-temperature ultraviolet photoluminesence properties of zirconia nanowires [J].
Cao, HQ ;
Qiu, XQ ;
Luo, B ;
Liang, Y ;
Zhang, YH ;
Tan, RQ ;
Zhao, MJ ;
Zhu, QM .
ADVANCED FUNCTIONAL MATERIALS, 2004, 14 (03) :243-246
[6]   Dielectric property and conduction mechanism of ultrathin zirconium oxide films [J].
Chang, JP ;
Lin, YS .
APPLIED PHYSICS LETTERS, 2001, 79 (22) :3666-3668
[7]   Synthesis and apparent bandgap of nanophase zirconia [J].
Ciuparu, D ;
Ensuque, A ;
Shafeev, G ;
Bozon-Verduraz, F .
JOURNAL OF MATERIALS SCIENCE LETTERS, 2000, 19 (11) :931-933
[8]   Spectroscopic and photoluminescence studies of a wide band gap insulating material:: Powdered and colloidal ZrO2 sols [J].
Emeline, A ;
Kataeva, GV ;
Litke, AS ;
Rudakova, AV ;
Ryabchuk, VK ;
Serpone, N .
LANGMUIR, 1998, 14 (18) :5011-5022
[9]   Relaxation dynamics of processes in colloidal zirconia nanosols. Dependence on excitation energy and temperature [J].
Emeline, AV ;
Serpone, N .
CHEMICAL PHYSICS LETTERS, 2001, 345 (1-2) :105-110
[10]   CHEMICAL EFFECTS ON CORE-ELECTRON BINDING ENERGIES IN IODINE AND EUROPIUM [J].
FADLEY, CS ;
HAGSTROM, SB ;
KLEIN, MP ;
SHIRLEY, DA .
JOURNAL OF CHEMICAL PHYSICS, 1968, 48 (08) :3779-&