Maximise equilibrium conversion in biphasic catalysed reactions: How to obtain reliable data for equilibrium constants?

被引:22
作者
Eckstein, M. F.
Lembrecht, J.
Schumacher, J.
Eberhard, W.
Spiess, A. C.
Peters, M.
Roosen, C.
Greiner, L.
Leitner, W.
Kragl, U.
机构
[1] Univ Rostock, Lahrstuhl Tech Chem, D-18059 Rostock, Germany
[2] Rhein Westfal TH Aachen Univ, Lehrstuhl Bioverfahrenstech, D-52074 Aachen, Germany
[3] Rhein Westfal TH Aachen Univ, Inst Tech & Makromol Chem, D-52074 Aachen, Germany
关键词
biotransformation; biphasic catalysis; equilibria; oxidoreductases; prediction;
D O I
10.1002/adsc.200606145
中图分类号
O69 [应用化学];
学科分类号
081704 ;
摘要
For the prediction and optimisation of the equilibrium conversion in biphasic catalysed reactions, the equilibrium constant of the desired reaction and the partition coefficients of all reactants have to be known. Within this contribution we have examined the alcohol dehydrogenase-catalysed reduction of several linear and aromatic ketones in biphasic reaction media with respect to equilibrium conversion. In this example, the equilibrium constant can be expressed in terms of differences in oxidation-reduction potentials Delta E-0. However, for a large variety of organic compounds, these data are quite rare in the literature. To overcome this lack of data, we have utilised methods of computational chemistry to calculate data for the Gibbs free energy Delta G(R) leading to the equilibrium constants of a homologous series of linear ketones. To obtain comparable data for the reduction of substituted acetophenone derivatives, the Hammett relation leads to the necessary equilibrium constants. Furthermore, we compare the equilibrium conversions of a set of cofactor regeneration methods for the alcohol dehydrogenase-catalysed reductions. These results lead to a time-saving experimental design for the enantioselective reduction of 2-octanone to (R)-2-octanol on a preparative scale utilising biphasic reaction conditions.
引用
收藏
页码:1597 / 1604
页数:8
相关论文
共 34 条
[1]   Hydroformylation in fluorous solvents [J].
Adams, DJ ;
Cole-Hamilton, DJ ;
Hope, EG ;
Pogorzelec, PJ ;
Stuart, AM .
JOURNAL OF ORGANOMETALLIC CHEMISTRY, 2004, 689 (08) :1413-1417
[2]   THE OXIDATION POTENTIALS OF ALDEHYDES AND KETONES [J].
ADKINS, H ;
ELOFSON, RM ;
ROSSOW, AG ;
ROBINSON, CC .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1949, 71 (11) :3622-3629
[3]   Cofactor regeneration in biocatalysis in organic media [J].
Adlercreutz, P .
BIOCATALYSIS AND BIOTRANSFORMATION, 1996, 14 (01) :1-30
[4]   Challenges in thermodynamics [J].
Arlt, W ;
Spuhl, O ;
Klamt, A .
CHEMICAL ENGINEERING AND PROCESSING-PROCESS INTENSIFICATION, 2004, 43 (03) :221-238
[5]   Industrial methods for the production of optically active intermediates [J].
Breuer, M ;
Ditrich, K ;
Habicher, T ;
Hauer, B ;
Kesseler, M ;
Stürmer, R ;
Zelinski, T .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2004, 43 (07) :788-824
[6]  
Bruijn J. D., 1989, ENVIRON TOXICOL CHEM, V8, P499
[7]   Effects of process conditions and electrode material on reaction pathways for carbon dioxide electroreduction with particular reference to formate formation [J].
Chaplin, RPS ;
Wragg, AA .
JOURNAL OF APPLIED ELECTROCHEMISTRY, 2003, 33 (12) :1107-1123
[8]  
Clark W. M., 1972, OXIDATION REDUCTION
[9]  
Cornils B, 2005, MULTIPHASE HOMOGENEOUS CATALYSIS, VOLS 1 AND 2, P1, DOI 10.1002/9783527619597
[10]   Biphasic chemistry utilising ionic liquids [J].
Dyson, PJ .
CHIMIA, 2005, 59 (03) :66-71