THE USE OF FLUORESCENCE CORRELATION SPECTROSCOPY TO PROBE MITOCHONDRIAL MOBILITY AND INTRAMATRIX PROTEIN DIFFUSION

被引:8
|
作者
Willems, Peter H. G. M. [1 ,2 ]
Swarts, Herman G. [1 ]
Hink, Mark A. [3 ]
Koopman, Werner J. H. [1 ,2 ]
机构
[1] Radboud Univ Nijmegen, Med Ctr, Dept Biochem, Nijmegen Ctr Mol Life Sci, NL-6525 ED Nijmegen, Netherlands
[2] Radboud Univ Nijmegen, Med Ctr, Microscop Imaging Ctr, Nijmegen Ctr Mol Life Sci, NL-6525 ED Nijmegen, Netherlands
[3] Max Planck Inst Mol Physiol, D-44139 Dortmund, Germany
关键词
IN-VIVO; CORRELATION MICROSCOPY; FUSION PROTEINS; HUMAN NADH; DYNAMICS; MOTILITY; INHIBITION; RELEASE; CALCIUM; VOLUME;
D O I
10.1016/S0076-6879(08)04416-9
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Within cells, functional changes in mitochondrial metabolic state are associated with alterations in organelle mobility, shape, and configuration of the mitochondrial matrix. Fluorescence correlation spectroscopy (FCS) is a technique that measures intensity fluctuations caused by single fluorescent molecules moving through a small detection volume. By mathematically correlating these fluctuations, information can be obtained about the concentration and rate of diffusion of the fluorescent molecules. Here we present an FCS-based approach for determining the mobility of enhanced yellow fluorescent protein (mitoEYFP) in the mitochondrial matrix of primary human skin fibroblasts. This protocol allows simultaneous quantification of intramatrix EYFP concentration and its diffusion constant, as well as the fraction of moving mitochondria and their velocity.
引用
收藏
页码:287 / 302
页数:16
相关论文
共 50 条
  • [41] Measuring rotational diffusion of macromolecules by fluorescence correlation spectroscopy
    Loman, Anastasia
    Gregor, Ingo
    Stutz, Christina
    Mund, Markus
    Enderlein, Jorg
    PHOTOCHEMICAL & PHOTOBIOLOGICAL SCIENCES, 2010, 9 (05) : 627 - 636
  • [42] Measuring diffusion in cell membranes by fluorescence correlation spectroscopy
    Sengupta, P
    Balaji, J
    Maiti, S
    METHODS, 2002, 27 (04) : 374 - 387
  • [43] A Simple Derivation of Diffusion Fluorescence Correlation Spectroscopy Equations
    Kyung Il Lee
    Natasha Astudillo
    Minchul Kang
    Journal of Fluorescence, 2020, 30 : 455 - 462
  • [44] Quantifying membrane binding and diffusion with fluorescence correlation spectroscopy diffusion laws
    Mouttou, Anita
    Bremaud, Erwan
    Noero, Julien
    Dibsy, Rayane
    Arone, Coline
    Mak, Johnson
    Muriaux, Delphine
    Berry, Hugues
    Favard, Cyril
    BIOPHYSICAL JOURNAL, 2023, 122 (11) : 2216 - 2229
  • [45] Lipophilic probe behavior in microemulsions evaluated by fluorescence correlation spectroscopy
    Johtaro Yamamoto
    Yoshio Suzuki
    Yoshikatsu Ogawa
    Tomoyuki Kamata
    Hinako Hashimoto
    Masashi Kunitake
    Dai kato
    Analytical Sciences, 2022, 38 : 401 - 408
  • [46] Lipophilic probe behavior in microemulsions evaluated by fluorescence correlation spectroscopy
    Yamamoto, Johtaro
    Suzuki, Yoshio
    Ogawa, Yoshikatsu
    Kamata, Tomoyuki
    Hashimoto, Hinako
    Kunitake, Masashi
    Kato, Dai
    ANALYTICAL SCIENCES, 2022, 38 (02) : 401 - 408
  • [47] Photosystem II antenna phosphorylation-dependent protein diffusion determined by fluorescence correlation spectroscopy
    Iwai, Masakazu
    Pack, Chan-Gi
    Takenaka, Yoshiko
    Sako, Yasushi
    Nakano, Akihiko
    SCIENTIFIC REPORTS, 2013, 3
  • [48] Photosystem II antenna phosphorylation-dependent protein diffusion determined by fluorescence correlation spectroscopy
    Masakazu Iwai
    Chan-Gi Pack
    Yoshiko Takenaka
    Yasushi Sako
    Akihiko Nakano
    Scientific Reports, 3
  • [49] Elucidating Anomalous Protein Diffusion in Living Cells with Fluorescence Correlation Spectroscopy-Facts and Pitfalls
    Malchus, Nina
    Weiss, Matthias
    JOURNAL OF FLUORESCENCE, 2010, 20 (01) : 19 - 26
  • [50] Protein-protein interactions determined by fluorescence correlation spectroscopy
    Langowski, J.
    FLUORESCENT PROTEINS, SECOND EDITION, 2008, 85 : 471 - +