THE USE OF FLUORESCENCE CORRELATION SPECTROSCOPY TO PROBE MITOCHONDRIAL MOBILITY AND INTRAMATRIX PROTEIN DIFFUSION

被引:8
|
作者
Willems, Peter H. G. M. [1 ,2 ]
Swarts, Herman G. [1 ]
Hink, Mark A. [3 ]
Koopman, Werner J. H. [1 ,2 ]
机构
[1] Radboud Univ Nijmegen, Med Ctr, Dept Biochem, Nijmegen Ctr Mol Life Sci, NL-6525 ED Nijmegen, Netherlands
[2] Radboud Univ Nijmegen, Med Ctr, Microscop Imaging Ctr, Nijmegen Ctr Mol Life Sci, NL-6525 ED Nijmegen, Netherlands
[3] Max Planck Inst Mol Physiol, D-44139 Dortmund, Germany
关键词
IN-VIVO; CORRELATION MICROSCOPY; FUSION PROTEINS; HUMAN NADH; DYNAMICS; MOTILITY; INHIBITION; RELEASE; CALCIUM; VOLUME;
D O I
10.1016/S0076-6879(08)04416-9
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Within cells, functional changes in mitochondrial metabolic state are associated with alterations in organelle mobility, shape, and configuration of the mitochondrial matrix. Fluorescence correlation spectroscopy (FCS) is a technique that measures intensity fluctuations caused by single fluorescent molecules moving through a small detection volume. By mathematically correlating these fluctuations, information can be obtained about the concentration and rate of diffusion of the fluorescent molecules. Here we present an FCS-based approach for determining the mobility of enhanced yellow fluorescent protein (mitoEYFP) in the mitochondrial matrix of primary human skin fibroblasts. This protocol allows simultaneous quantification of intramatrix EYFP concentration and its diffusion constant, as well as the fraction of moving mitochondria and their velocity.
引用
收藏
页码:287 / 302
页数:16
相关论文
共 50 条
  • [31] A Simple Derivation of Diffusion Fluorescence Correlation Spectroscopy Equations
    Lee, Kyung Ii
    Astudillo, Natasha
    Kang, Minchul
    JOURNAL OF FLUORESCENCE, 2020, 30 (03) : 455 - 462
  • [32] Measuring rotational diffusion of macromolecules by fluorescence correlation spectroscopy
    Anastasia Loman
    Ingo Gregor
    Christina Stutz
    Markus Mund
    Jörg Enderlein
    Photochemical & Photobiological Sciences, 2010, 9 : 627 - 636
  • [33] Performance of fluorescence correlation spectroscopy for measuring diffusion and concentration
    Enderlein, J
    Gregor, I
    Patra, D
    Dertinger, T
    Kaupp, UB
    CHEMPHYSCHEM, 2005, 6 (11) : 2324 - 2336
  • [34] Diffusion Measurements of Swimming Enzymes with Fluorescence Correlation Spectroscopy
    Guenther, Jan-Philipp
    Boersch, Michael
    Fischer, Peer
    ACCOUNTS OF CHEMICAL RESEARCH, 2018, 51 (09) : 1911 - 1920
  • [35] FLUORESCENCE CORRELATION SPECTROSCOPY APPLIED TO ROTATIONAL DIFFUSION OF MACROMOLECULES
    EHRENBERG, M
    RIGLER, R
    QUARTERLY REVIEWS OF BIOPHYSICS, 1976, 9 (01) : 69 - 81
  • [36] Diffusion in Polymer Solutions Studied by Fluorescence Correlation Spectroscopy
    Cherdhirankorn, Thipphaya
    Best, Andreas
    Koynov, Kaloian
    Peneva, Kalina
    Muellen, Klaus
    Fytas, George
    JOURNAL OF PHYSICAL CHEMISTRY B, 2009, 113 (11): : 3355 - 3359
  • [37] Tracer diffusion in nanofluids measured by fluorescence correlation spectroscopy
    Subba-Rao, Venkatesh
    Hoffmann, Peter M.
    Mukhopadhyay, Ashis
    JOURNAL OF NANOPARTICLE RESEARCH, 2011, 13 (12) : 6313 - 6319
  • [38] A Universal Model of Restricted Diffusion for Fluorescence Correlation Spectroscopy
    Piskorz, Tomasz K.
    Ochab-Marcinek, Anna
    JOURNAL OF PHYSICAL CHEMISTRY B, 2014, 118 (18): : 4906 - 4912
  • [39] Diffusion in biological systems as seen by fluorescence correlation spectroscopy
    Elsner, M
    Weiss, M
    Nilsson, T
    BIOPHYSICAL JOURNAL, 2005, 88 (01) : 223A - 224A
  • [40] Tracer diffusion in nanofluids measured by fluorescence correlation spectroscopy
    Venkatesh Subba-Rao
    Peter M. Hoffmann
    Ashis Mukhopadhyay
    Journal of Nanoparticle Research, 2011, 13 : 6313 - 6319