THE USE OF FLUORESCENCE CORRELATION SPECTROSCOPY TO PROBE MITOCHONDRIAL MOBILITY AND INTRAMATRIX PROTEIN DIFFUSION

被引:8
|
作者
Willems, Peter H. G. M. [1 ,2 ]
Swarts, Herman G. [1 ]
Hink, Mark A. [3 ]
Koopman, Werner J. H. [1 ,2 ]
机构
[1] Radboud Univ Nijmegen, Med Ctr, Dept Biochem, Nijmegen Ctr Mol Life Sci, NL-6525 ED Nijmegen, Netherlands
[2] Radboud Univ Nijmegen, Med Ctr, Microscop Imaging Ctr, Nijmegen Ctr Mol Life Sci, NL-6525 ED Nijmegen, Netherlands
[3] Max Planck Inst Mol Physiol, D-44139 Dortmund, Germany
关键词
IN-VIVO; CORRELATION MICROSCOPY; FUSION PROTEINS; HUMAN NADH; DYNAMICS; MOTILITY; INHIBITION; RELEASE; CALCIUM; VOLUME;
D O I
10.1016/S0076-6879(08)04416-9
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Within cells, functional changes in mitochondrial metabolic state are associated with alterations in organelle mobility, shape, and configuration of the mitochondrial matrix. Fluorescence correlation spectroscopy (FCS) is a technique that measures intensity fluctuations caused by single fluorescent molecules moving through a small detection volume. By mathematically correlating these fluctuations, information can be obtained about the concentration and rate of diffusion of the fluorescent molecules. Here we present an FCS-based approach for determining the mobility of enhanced yellow fluorescent protein (mitoEYFP) in the mitochondrial matrix of primary human skin fibroblasts. This protocol allows simultaneous quantification of intramatrix EYFP concentration and its diffusion constant, as well as the fraction of moving mitochondria and their velocity.
引用
收藏
页码:287 / 302
页数:16
相关论文
共 50 条
  • [21] Live cell protein mobility and interaction maps by light sheet fluorescence correlation spectroscopy
    Krieger, J. W.
    Pernus, A.
    Singh, A. Pratap
    Wohland, T.
    Langowski, J.
    EUROPEAN BIOPHYSICS JOURNAL WITH BIOPHYSICS LETTERS, 2013, 42 : S200 - S200
  • [22] FLUORESCENCE CORRELATION SPECTROSCOPY AS A PROBE OF MOLECULAR-DYNAMICS
    ARAGON, SR
    PECORA, R
    JOURNAL OF CHEMICAL PHYSICS, 1976, 64 (04): : 1791 - 1803
  • [23] Photobleaching, mobility, and compartmentalisation: Inferences in fluorescence correlation spectroscopy
    Delon, A
    Usson, Y
    Derouard, J
    Biben, T
    Souchier, C
    JOURNAL OF FLUORESCENCE, 2004, 14 (03) : 255 - 267
  • [24] Photobleaching, Mobility, and Compartmentalisation: Inferences in Fluorescence Correlation Spectroscopy
    A. Delon
    Y. Usson
    J. Derouard
    T. Biben
    C. Souchier
    Journal of Fluorescence, 2004, 14 : 255 - 267
  • [25] Elucidating Anomalous Protein Diffusion in Living Cells with Fluorescence Correlation Spectroscopy—Facts and Pitfalls
    Nina Malchus
    Matthias Weiss
    Journal of Fluorescence, 2010, 20 : 19 - 26
  • [26] Sub-Diffusion Decays in Fluorescence Correlation Spectroscopy: Dye Photophysics or Protein Dynamics?
    Mazouchi, Amir
    Bahram, Abdullah
    Gradinaru, Claudiu C.
    JOURNAL OF PHYSICAL CHEMISTRY B, 2013, 117 (38): : 11100 - 11111
  • [27] Characterizing diffusion dynamics of a membrane protein associated with nanolipoproteins using fluorescence correlation spectroscopy
    Gao, Tingjuan
    Blanchette, Craig D.
    He, Wei
    Bourguet, Feliza
    Ly, Sonny
    Katzen, Federico
    Kudlicki, Wieslaw A.
    Henderson, Paul T.
    Laurence, Ted A.
    Huser, Thomas
    Coleman, Matthew A.
    PROTEIN SCIENCE, 2011, 20 (02) : 437 - 447
  • [28] Image correlation spectroscopy approaches to probe diffusion in cell
    Civita, Simone
    Bizzarri, Ranieri
    Bianchini, Paolo
    Diaspro, Alberto
    BIOPHYSICAL JOURNAL, 2023, 122 (03) : 274A - 274A
  • [29] Accurate use of single molecule fluorescence correlation spectroscopy to determine molecular diffusion times
    Gell, C
    Brockwell, DJ
    Beddard, GS
    Radford, SE
    Kalverda, AP
    Smith, DA
    SINGLE MOLECULES, 2001, 2 (03) : 177 - 181
  • [30] Intracellular fluorescence correlation spectroscopy: Lipid diffusion in membranes
    Visser, AJWG
    Hink, MA
    BIOPHYSICAL JOURNAL, 2001, 80 (01) : 179A - 179A