Generalized maximum-likelihood generalized extreme-value quantile estimators for hydrologic data

被引:481
作者
Martins, ES
Stedinger, JR
机构
[1] Cornell Univ, Sch Civil & Environm Engn, Ithaca, NY 14853 USA
[2] Governo Estado Ceara, FUNCEME, Fortaleza, Ceara, Brazil
关键词
D O I
10.1029/1999WR900330
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The three-parameter generalized extreme-value (GEV) distribution has found wide application for describing annual floods, rainfall, wind speeds, wave heights, snow depths, and other maxima. Previous studies show that small-sample maximum-likelihood estimators (MLE) of parameters are unstable and recommend L moment estimators. More recent research shows that method of moments quantile estimators have for -0.25 < kappa < 0.30 smaller root-mean-square error than L moments and MLEs. Examination of the behavior of MLEs in small samples demonstrates that absurd values of the GEV-shape parameter kappa can be generated. Use of a Bayesian prior distribution to restrict kappa values to a statistically/physically reasonable range in a generalized maximum likelihood (GML) analysis eliminates this problem. In our examples the GML estimator did substantially better than moment and L moment quantile estimators for -0.4 less than or equal to kappa less than or equal to 0.
引用
收藏
页码:737 / 744
页数:8
相关论文
共 40 条
[11]  
HOSKING JRM, 1990, J ROY STAT SOC B MET, V52, P105
[12]   ESTIMATION OF THE GENERALIZED EXTREME-VALUE DISTRIBUTION BY THE METHOD OF PROBABILITY-WEIGHTED MOMENTS [J].
HOSKING, JRM ;
WALLIS, JR ;
WOOD, EF .
TECHNOMETRICS, 1985, 27 (03) :251-261
[13]   AN APPRAISAL OF THE REGIONAL FLOOD FREQUENCY PROCEDURE IN THE UK FLOOD STUDIES REPORT [J].
HOSKING, JRM ;
WALLIS, JR ;
WOOD, EF .
HYDROLOGICAL SCIENCES JOURNAL-JOURNAL DES SCIENCES HYDROLOGIQUES, 1985, 30 (01) :85-102
[14]  
HOSKING JRM, 1997, REGIONAL FREQUENCY A
[15]  
Hosking JRM, 1985, APPL STAT-J ROY ST C, V34, P301
[17]  
Jenkinson AF., 1969, Estimation of Maximum Floods, WMO, V233, P183
[18]   FLOOD FREQUENCY-ANALYSIS WITH REGIONAL AND HISTORICAL INFORMATION [J].
JIN, MH ;
STEDINGER, JR .
WATER RESOURCES RESEARCH, 1989, 25 (05) :925-936
[19]   Comprehensive at-site flood frequency analysis using Monte Carlo Bayesian inference [J].
Kuczera, G .
WATER RESOURCES RESEARCH, 1999, 35 (05) :1551-1557
[20]   PROBABILITY WEIGHTED MOMENTS COMPARED WITH SOME TRADITIONAL TECHNIQUES IN ESTIMATING GUMBEL PARAMETERS AND QUANTILES [J].
LANDWEHR, JM ;
MATALAS, NC ;
WALLIS, JR .
WATER RESOURCES RESEARCH, 1979, 15 (05) :1055-1064