Diffusion on locally compact ultrametric spaces

被引:25
作者
Del Muto, M
Figa-Talamanca, A
机构
[1] Ace Snc, I-00181 Rome, Italy
[2] Univ Roma La Sapienza, Dipartimento Matemat, I-00185 Rome, Italy
关键词
ultrametric space; diffusion process; tree; random walk; nearest-neighbor; local field;
D O I
10.1016/S0723-0869(04)80005-7
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider an ultrametric space with sufficiently many isometries and we construct a class of diffusion processes on the space as appropriate limits of discrete processes on the (open and closed) balls of the space. We show, using a version of the Levy Khintchine formula adapted to this general context, that our construction includes all convolution semigroups associated to an unbounded Levy measure. Finally we relate our construction to the construction of diffusion processes due to S. Albeverio, and W. Karwowski on p-adic fields.
引用
收藏
页码:197 / 211
页数:15
相关论文
共 19 条
[1]   Asymptotics and spectral results for random walks on p-adics [J].
Albeverio, S ;
Karwowski, W ;
Zhao, XL .
STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 1999, 83 (01) :39-59
[2]   A RANDOM-WALK ON P-ADICS - THE GENERATOR AND ITS SPECTRUM [J].
ALBEVERIO, S ;
KARWOWSKI, W .
STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 1994, 53 (01) :1-22
[3]  
ALBEVERIO S, 1991, S PROB STAT, V1, P86
[4]  
ALBEVERIO S, 2000, MARKOV PROCESS RELAT, V6, P239
[5]  
[Anonymous], EXPO MATH
[6]   Stable laws arising from hitting distributions of processes on homogeneous trees and the hyperbolic half-plane [J].
Baldi, P ;
Casadio Tarabusi, E ;
Figà-Talamanca, A .
PACIFIC JOURNAL OF MATHEMATICS, 2001, 197 (02) :257-273
[7]  
CARTIER P, 1972, S MATH, V9, P203
[8]  
Evans St. N., 1989, J. Theor. Probab, V2, P209, DOI [10.1007/BF01053411, DOI 10.1007/BF01053411]
[9]  
Figa-Talamanca A., 1991, LONDON MATH SOC LECT, V162
[10]  
FIGATALAMANCA A, 1994, NATO ADV SCI INST SE, V429, P157