Magnetic Anisotropy Engineering in Thin Film Ni Nanostructures by Magnetoelastic Coupling

被引:82
作者
Finizio, S. [1 ]
Foerster, M. [1 ,2 ]
Buzzi, M. [3 ]
Krueger, B. [1 ]
Jourdan, M. [1 ]
Vaz, C. A. F. [1 ,4 ]
Hockel, J. [5 ]
Miyawaki, T. [6 ]
Tkach, A. [1 ]
Valencia, S. [7 ]
Kronast, F. [7 ]
Carman, G. P. [5 ]
Nolting, F. [3 ]
Klaeui, M. [1 ]
机构
[1] Johannes Gutenberg Univ Mainz, Inst Phys, D-55128 Mainz, Germany
[2] ALBA Synchrotron Light Source, E-08290 Cerdanyola Del Valles, Spain
[3] Paul Scherrer Inst, Swiss Light Source, CH-5232 Villigen, Switzerland
[4] Paul Scherrer Inst, SwissFEL, CH-5232 Villigen, Switzerland
[5] Univ Calif Los Angeles, Dept Mech & Aerosp Engn, Los Angeles, CA 90095 USA
[6] Nagoya Univ, Dept Crystalline Mat Sci, Nagoya, Aichi 4648603, Japan
[7] Helmholtz Zentrum Berlin Mat & Energie GmbH, D-12489 Berlin, Germany
基金
瑞士国家科学基金会; 欧洲研究理事会; 美国国家科学基金会;
关键词
MICROSCOPY;
D O I
10.1103/PhysRevApplied.1.021001
中图分类号
O59 [应用物理学];
学科分类号
摘要
A phenomenon that can be exploited for the manipulation of magnetization without the conventional current-generated magnetic fields is magnetoelastic coupling, which might, thus, pave the way for low-power data-storage devices. Here, we report a quantitative analysis of the magnetic uniaxial anisotropy induced by piezoelectric strain in Ni nanostructured squares. By applying strain, the magnetic domains in Ni nanostructured squares can be manipulated by the magnetoelastic effect in the Ni. The strain-induced anisotropy displaces the domain walls in the square leading to changes in the domain sizes. By comparing the experiments with micromagnetic simulations, the resulting uniaxial anisotropy is quantified. We find a good agreement for a magnetostrictive constant of lambda(s) = -26 ppm, confirming a full strain transfer from the piezoelectric to the Ni nanostructures and the retainment of a bulklike lambda(s).
引用
收藏
页数:6
相关论文
共 21 条
[1]   Effect of biaxial strain on the electrical and magnetic properties of (001) La0.7Sr0.3MnO3 thin films [J].
Adamo, C. ;
Ke, X. ;
Wang, H. Q. ;
Xin, H. L. ;
Heeg, T. ;
Hawley, M. E. ;
Zander, W. ;
Schubert, J. ;
Schiffer, P. ;
Muller, D. A. ;
Maritato, L. ;
Schlom, D. G. .
APPLIED PHYSICS LETTERS, 2009, 95 (11)
[2]   Toward a universal memory [J].
Åkerman, J .
SCIENCE, 2005, 308 (5721) :508-510
[3]  
[Anonymous], INTRO MAGNETIC MAT
[4]   Strain-induced magnetization change in patterned ferromagnetic nickel nanostructures [J].
Bur, Alexandre ;
Wu, Tao ;
Hockel, Joshua ;
Hsu, Chin-Jui ;
Kim, Hyungsuk K. D. ;
Chung, Tien-Kan ;
Wong, Kin ;
Wang, Kang L. ;
Carman, Gregory P. .
JOURNAL OF APPLIED PHYSICS, 2011, 109 (12)
[5]   Single Domain Spin Manipulation by Electric Fields in Strain Coupled Artificial Multiferroic Nanostructures [J].
Buzzi, M. ;
Chopdekar, R. V. ;
Hockel, J. L. ;
Bur, A. ;
Wu, T. ;
Pilet, N. ;
Warnicke, P. ;
Carman, G. P. ;
Heyderman, L. J. ;
Nolting, F. .
PHYSICAL REVIEW LETTERS, 2013, 111 (02)
[6]   Performance measurements at the SLS SIM beamline [J].
Flechsig, U. ;
Nolting, F. ;
Rodriguez, A. Fraile ;
Krempasky, J. ;
Quitmann, C. ;
Schmidt, T. ;
Spielmann, S. ;
Zimoch, D. .
SRI 2009: THE 10TH INTERNATIONAL CONFERENCE ON SYNCHROTRON RADIATION INSTRUMENTATION, 2010, 1234 :319-322
[7]   Electrical characterization of PMN-28%PT(001) crystals used as thin-film substrates [J].
Herklotz, Andreas ;
Plumhof, Johannes D. ;
Rastelli, Armando ;
Schmidt, Oliver G. ;
Schultz, Ludwig ;
Doerr, Kathrin .
JOURNAL OF APPLIED PHYSICS, 2010, 108 (09)
[8]   Electric field induced magnetization rotation in patterned Ni ring/Pb(Mg1/3Nb2/3)O3](120.32)-[PbTiO3]0.32 heterostructures [J].
Hockel, Joshua L. ;
Bur, Alexandre ;
Wu, Tao ;
Wetzlar, Kyle P. ;
Carman, Gregory P. .
APPLIED PHYSICS LETTERS, 2012, 100 (02)
[9]  
Hubert A., 1998, Magnetic Domains: The Analysis of Magnetic Microstructures
[10]   Current-driven magnetization reversal and spin-wave excitations in Co/Cu/Co pillars [J].
Katine, JA ;
Albert, FJ ;
Buhrman, RA ;
Myers, EB ;
Ralph, DC .
PHYSICAL REVIEW LETTERS, 2000, 84 (14) :3149-3152