Tailoring Chiroptical Activity of Iron Disulfide Quantum Dot Hydrogels with Circularly Polarized Light

被引:108
作者
Hao, Changlong [1 ,2 ]
Gao, Yifan [1 ,2 ]
Wu, Di [3 ]
Li, Si [1 ,2 ]
Xu, Liguang [1 ,2 ]
Wu, Xiaoling [1 ,2 ]
Guo, Jun [4 ]
Sun, Maozhong [1 ,2 ]
Li, Xiu [1 ,2 ]
Xu, Chuanlai [1 ,2 ]
Kuang, Hua [1 ,2 ]
机构
[1] Jiangnan Univ, Key Lab Synthet & Biol Colloids, Minist Educ, State Key Lab Food Sci & Technol,Sch Chem & Mat E, Wuxi 214122, Jiangsu, Peoples R China
[2] Jiangnan Univ, Int Joint Res Lab Biointerface & Biodetect, Wuxi, Jiangsu, Peoples R China
[3] Tsinghua Univ, Yangtze Delta Reg Inst, 705 Yatai Rd, Jiaxing 314006, Zhejiang, Peoples R China
[4] Soochow Univ, Testing & Anal Ctr, Renai Rd 199, Suzhou 215123, Peoples R China
基金
中国国家自然科学基金;
关键词
circularly polarized light; electron transfer; hydrogels; iron disulfide quantum dots; SUPRAMOLECULAR CHIRALITY; OPTICAL-ACTIVITY; NANOPARTICLES; INVERSION;
D O I
10.1002/adma.201903200
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Chiral inorganic nanomaterials have recently attracted significant attention because of their many important applications, such as in asymmetric catalysis and chiral sensing. Here, chiral iron disulfide quantum dots (FeS2 QDs) are synthesized via chirality transfer using l/d-cysteine (Cys) as chiral ligands. The chiral FeS2 QDs are coassembled with two gelators to produce a cogel (l- or d-[Gel+FeS2]) with a g-factor value of +/- 0.06. Interestingly, the cogels display intense circularly polarized luminescence. More significantly, the degree of twisting (twist pitch) and the diameter of the cogels can be markedly regulated by illumination with circularly polarized light (CPL) in the ranges of 120-213 and 37-65 nm, respectively, which is caused by the CPL-induced electron transfer. This research opens the way for the design of chiroptical devices with a wide range of functions and applications.
引用
收藏
页数:6
相关论文
共 37 条
[31]   Helix Induction to Polyfluorenes Using Circularly Polarized Light: Chirality Amplification, Phase-Selective Induction, and Anisotropic Emission [J].
Wang, Yue ;
Harada, Takunori ;
Phuong, Le Quang ;
Kanemitsu, Yoshihiko ;
Nakano, Tamaki .
MACROMOLECULES, 2018, 51 (17) :6865-6877
[32]  
Wu L.-Z., 2019, ANGEW CHEM INT EDIT, DOI [10. 1002/anie. 201901267, DOI 10.1002/ANIE.201901267]
[33]   MicroRNA-Directed Intracellular Self-Assembly of Chiral Nanorod Dimers [J].
Xu, Liguang ;
Gao, Yifan ;
Kuang, Hua ;
Liz-Marzan, Luis M. ;
Xu, Chuanlai .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2018, 57 (33) :10544-10548
[34]   Chirality and energy transfer amplified circularly polarized luminescence in composite nanohelix [J].
Yang, Dong ;
Duan, Pengfei ;
Zhang, Li ;
Liu, Minghua .
NATURE COMMUNICATIONS, 2017, 8
[35]   Chiromagnetic nanoparticles and gels [J].
Yeom, Jihyeon ;
Santos, Uallisson S. ;
Chekini, Mahshid ;
Cha, Minjeong ;
de Moura, Andre F. ;
Kotov, Nicholas A. .
SCIENCE, 2018, 359 (6373) :309-+
[36]   Chiral Nanoarchitectonics: Towards the Design, Self-Assembly, and Function of Nanoscale Chiral Twists and Helices [J].
Zhang, Li ;
Wang, Tianyu ;
Shen, Zhaocun ;
Liu, Minghua .
ADVANCED MATERIALS, 2016, 28 (06) :1044-1059
[37]   Chirality Control for in Situ Preparation of Gold Nanoparticle Superstructures Directed by a Coordinatable Organogelator [J].
Zhu, Liangliang ;
Li, Xin ;
Wu, Shaojue ;
Kim Truc Nguyen ;
Yan, Hong ;
Agren, Hans ;
Zhao, Yanli .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2013, 135 (24) :9174-9180