Geostrophic Flow and Wind-Driven Ocean Currents Depending on the Spatial Dimensionality of the Medium

被引:19
作者
El-Nabulsi, Rami Ahmad [1 ,2 ]
机构
[1] Athens Inst Educ & Res, Div Math, 8 Valaoritou St, Athens 10671, Greece
[2] Athens Inst Educ & Res, Div Phys, 8 Valaoritou St, Athens 10671, Greece
关键词
Fractional Navier-Stokes equations; geostrophic flow; wind-driven ocean currents; NAVIER-STOKES EQUATIONS; FINITE-ELEMENT METHODS; WAVE-EQUATION; FLUIDS;
D O I
10.1007/s00024-018-2080-x
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
An approach based on noninteger fractional dimension is used to derive extended forms of the Navier-Stokes equations in order to describe geostrophic flow and wind-driven ocean current motion. The equations give rise to several features not obtained in the conventional formalism, which are discussed in some detail. This study demonstrates that the spatial dimensionality of the medium plays a crucial role in rotating fluids and ocean physics, and besides the extended Navier-Stokes equations could be used to describe turbulent ocean physical models.
引用
收藏
页码:2739 / 2750
页数:12
相关论文
共 57 条
[1]  
Abramowitz M., 1983, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. Applied Mathematics Series, V55
[2]  
[Anonymous], 1992, VORTEX DYNAMICS, DOI DOI 10.1017/CBO9780511624063
[3]  
[Anonymous], 1987, COURSE THEORETICAL P, DOI DOI 10.1016/C2013-0-03799-1
[4]  
[Anonymous], 1997, Fractals and Fractional Calculus in Continuum Mechanics
[5]  
[Anonymous], CRYOSPHERE
[6]   Numerical analysis of fractional MHD Maxwell fluid with the effects of convection heat transfer condition and viscous dissipation [J].
Bai, Yu ;
Jiang, Yuehua ;
Liu, Fawang ;
Zhang, Yan .
AIP ADVANCES, 2017, 7 (12)
[7]   Steady laminar flow of fractal fluids [J].
Balankin, Alexander S. ;
Mena, Baltasar ;
Susarrey, Orlando ;
Samayoa, Didier .
PHYSICS LETTERS A, 2017, 381 (06) :623-628
[8]   Map of fluid flow in fractal porous medium into fractal continuum flow [J].
Balankin, Alexander S. ;
Espinoza Elizarraraz, Benjamin .
PHYSICAL REVIEW E, 2012, 85 (05)
[9]   Hydrodynamics of fractal continuum flow [J].
Balankin, Alexander S. ;
Espinoza Elizarraraz, Benjamin .
PHYSICAL REVIEW E, 2012, 85 (02)
[10]  
El-Nabulsi RA, 2017, QUALITATIVE THEORY D