STOCHASTIC CALCULUS FOR MARKOV PROCESSES ASSOCIATED WITH SEMI-DIRICHLET FORMS

被引:0
|
作者
Chen, Chuan-Zhong [1 ]
Ma, Li [1 ]
Sun, Wei [2 ]
机构
[1] Hainan Normal Univ, Sch Math & Stat, Haikou 571158, Hainan, Peoples R China
[2] Concordia Univ, Dept Math & Stat, Montreal, PQ H3G 1M8, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Semi-Dirichlet form; Fukushima type decomposition; zero quadratic variation process; Nakao's integral; Ito's formula; ADDITIVE-FUNCTIONALS; DECOMPOSITION;
D O I
10.2748/tmj/1520564420
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We present a new Fukushima type decomposition in the framework of semiDirichlet forms. This generalizes the result of Ma, Sun and Wang [17, Theorem 1.4] by removing the condition (S). We also extend Nakao's integral to semi-Dirichlet forms and derive Ito's formula related to it.
引用
收藏
页码:97 / 119
页数:23
相关论文
共 50 条
  • [11] FUKUSHIMA'S DECOMPOSITION FOR DIFFUSIONS ASSOCIATED WITH SEMI-DIRICHLET FORMS
    Ma, Li
    Ma, Zhi-Ming
    Sun, Wei
    STOCHASTICS AND DYNAMICS, 2012, 12 (04)
  • [12] Nonlinear filtering of semi-Dirichlet processes
    Hu, Ze-Chun
    Ma, Zhi-Ming
    Sun, Wei
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2009, 119 (11) : 3890 - 3913
  • [13] FUKUSHIMA TYPE DECOMPOSITION FOR SEMI-DIRICHLET FORMS
    Ma, Zhi-Ming
    Sun, Wei
    Wang, Li-Fei
    TOHOKU MATHEMATICAL JOURNAL, 2016, 68 (01) : 1 - 27
  • [14] On the Quasi-regularity of Semi-Dirichlet Forms
    P.J. Fitzsimmons
    Potential Analysis, 2001, 15 : 151 - 185
  • [15] On the quasi-regularity of semi-Dirichlet forms
    Fitzsimmons, PJ
    POTENTIAL ANALYSIS, 2001, 15 (03) : 151 - 185
  • [16] Variational formulas for the exit time of Hunt processes generated by semi-Dirichlet forms
    Huang, Lu-Jing
    Kim, Kyung-Youn
    Mao, Yong-Hua
    Wang, Tao
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2022, 148 : 380 - 399
  • [17] Beurling-Deny formula of semi-Dirichlet forms
    Hu, ZC
    Ma, ZM
    COMPTES RENDUS MATHEMATIQUE, 2004, 338 (07) : 521 - 526
  • [18] JUMP-TYPE HUNT PROCESSES GENERATED BY LOWER BOUNDED SEMI-DIRICHLET FORMS
    Fukushima, Masatoshi
    Uemura, Toshihiro
    ANNALS OF PROBABILITY, 2012, 40 (02): : 858 - 889
  • [19] Invariant sets and ergodic decomposition of local semi-Dirichlet forms
    Kuwae, Kazuhiro
    FORUM MATHEMATICUM, 2011, 23 (06) : 1259 - 1279
  • [20] GENERALIZED DIRICHLET FORMS AND ASSOCIATED MARKOV-PROCESSES
    STANNAT, W
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1994, 319 (10): : 1063 - 1068