Wavelet frames with irregular matrix dilations and their stability

被引:8
作者
Yang, DY [1 ]
Zhou, XW
机构
[1] Nankai Univ, Dept Math, Tianjin 300071, Peoples R China
[2] Taishan Coll, Dept Comp Sci, Tai An 271000, Peoples R China
基金
高等学校博士学科点专项科研基金; 中国国家自然科学基金;
关键词
fourier transform; frame; wavelet; expansive matrix;
D O I
10.1016/j.jmaa.2004.03.007
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let psi is an element of L-2(R-n), B and A(j) (j is an element of Z) be real nonsingular n x n matrices, lambda(k) (k is an element of Z(n)) be real numbers. In this paper we present a sufficient condition for the system {\et A(j\\)(2)psi(A(j)x - Blambda(k)): j is an element of Z, k is an element of Z(n)} to be a frame for L-2(R-n). This sufficient condition also shows the stability of the system with respect to the perturbation of matrix dilation parameters {A(j)}(jis an element ofZ) and the perturbation of translation parameters {lambda(k)}(kis an element ofZn). (C) 2004 Elsevier Inc. All rights reserved.
引用
收藏
页码:97 / 106
页数:10
相关论文
共 8 条
[1]   A characterization of affine dual frames in L2 (Rn) [J].
Bownik, M .
APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2000, 8 (02) :203-221
[2]  
Christensen O, 1997, MATH NACHR, V185, P33
[3]   ON THE STABILITY OF FRAMES AND RIESZ BASES [J].
FAVIER, SJ ;
ZALIK, RA .
APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 1995, 2 (02) :160-173
[4]   DESCRIBING FUNCTIONS - ATOMIC DECOMPOSITIONS VERSUS FRAMES [J].
GROCHENIG, K .
MONATSHEFTE FUR MATHEMATIK, 1991, 112 (01) :1-41
[5]  
HEIL C, 2003, J GEOM ANAL, V13, P479
[6]   A NOTE ON IRREGULAR DISCRETE WAVELET TRANSFORMS [J].
OLSEN, PA ;
SEIP, K .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1992, 38 (02) :861-863
[7]   Irregular wavelet/Gabor frames [J].
Sun, WC ;
Zhou, XW .
APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2002, 13 (01) :63-76
[8]  
ZHANG J, 1999, J FOURIER ANAL APPL, V5, P105