Deformed symmetry in Snyder space and relativistic particle dynamics

被引:52
作者
Banerjee, Rabin [1 ]
Kulkarni, Shailesh [1 ]
Samanta, Saurav [1 ]
机构
[1] SN Bose Natl Ctr Basic Sci, Kolkata 700098, W Bengal, India
关键词
commutative geometry; space-time symmetries;
D O I
10.1088/1126-6708/2006/05/077
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
We describe the deformed Poincare-conformal symmetries implying the covariance of the noncommutative space obeying Snyder's algebra. Relativistic particle models invariant under these deformed symmetries are presented. A gauge (reparametrisation) independent derivation of Snyder's algebra from such models is given. The algebraic transformations relating the deformed symmetries with the usual (undeformed) ones are provided. Finally, an alternative form of an action yielding Snyder's algebra is discussed where the mass of a relativistic particle gets identified with the inverse of the noncommutativity parameter.
引用
收藏
页数:22
相关论文
共 29 条
[1]   A gravity theory on noncommultative spaces [J].
Aschieri, P ;
Blohmann, C ;
Dimitrijevi, M ;
Meyer, F ;
Schupp, P ;
Wess, J .
CLASSICAL AND QUANTUM GRAVITY, 2005, 22 (17) :3511-3532
[2]  
Balachandran AP, 2004, J HIGH ENERGY PHYS
[3]   Noncommutative gauge theories and Lorentz symmetry [J].
Banerjee, R ;
Chakraborty, B ;
Kumar, K .
PHYSICAL REVIEW D, 2004, 70 (12) :125004-1
[4]   Noncommutative field theory and Lorentz violation [J].
Carroll, SM ;
Harvey, JA ;
Kostelecky, VA ;
Lane, CD ;
Okamoto, T .
PHYSICAL REVIEW LETTERS, 2001, 87 (14) :141601/1-141601/4
[5]   New concept of relativistic invariance in noncommutative space-time: Twisted poincare symmetry and its implications [J].
Chaichian, M ;
Presnajder, P ;
Tureanu, A .
PHYSICAL REVIEW LETTERS, 2005, 94 (15)
[6]   On a Lorentz-invariant interpretation of noncommutative space-time and its implications on noncommutative QFT [J].
Chaichian, M ;
Kulish, PP ;
Nishijima, K ;
Tureanu, A .
PHYSICS LETTERS B, 2004, 604 (1-2) :98-102
[7]   Exact solution of the harmonic oscillator in arbitrary dimensions with minimal length uncertainty relations [J].
Chang, LN ;
Minic, D ;
Okamura, N ;
Takeuchi, T .
PHYSICAL REVIEW D, 2002, 65 (12)
[8]  
CHU CS, HEPTH0502167
[9]  
DERIGLAZOV AA, HEPTH0207274, P91802
[10]  
Dirac P.A.M., 1964, LECT QUANTUM MECH