On the Design of a PID Bio-Controller With Set Point Weighting and Filtered Derivative Action

被引:8
作者
Alexis, Emmanouil [1 ]
Cardelli, Luca [2 ]
Papachristodoulou, Antonis [1 ]
机构
[1] Univ Oxford, Dept Engn Sci, Oxford OX1 3PJ, England
[2] Univ Oxford, Dept Comp Sci, Oxford OX1 3QD, England
来源
IEEE CONTROL SYSTEMS LETTERS | 2022年 / 6卷
基金
英国工程与自然科学研究理事会;
关键词
PD control; PI control; Steady-state; Biological system modeling; Biological processes; Topology; Stochastic processes; PID control; biomolecular systems; synthetic biology; NOISE; DNA;
D O I
10.1109/LCSYS.2022.3182911
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Effective and robust regulation of biomolecular processes is crucial for designing reliable synthetic bio-devices functioning in uncertain and constantly changing biological environments. Proportional-Integral-Derivative (PID) controllers are undeniably the most common way of implementing feedback control in modern technological applications. Here, we introduce a highly tunable PID bio-controller with set point weighting and filtered derivative action presented as a chemical reaction network with mass action kinetics. To demonstrate its effectiveness, we apply our PID scheme on a simple biological process of two mutually activated species, one of which is assumed to be the output of interest. To highlight its performance advantages we compare it to PI regulation using numerical simulations in both the deterministic and stochastic setting.
引用
收藏
页码:3134 / 3139
页数:6
相关论文
共 33 条
[1]   Biomolecular mechanisms for signal differentiation [J].
Alexis, Emmanouil ;
Schulte, Carolin C. M. ;
Cardelli, Luca ;
Papachristodoulou, Antonis .
ISCIENCE, 2021, 24 (12)
[2]  
Alon U., 2007, An Introduction to Systems Biology: Design Principles of Biological Circuits, DOI [10.1201/9781420011432, DOI 10.1201/9781420011432]
[3]  
Anderson DF., 2015, STOCHASTIC ANAL BIOC
[4]  
Astrom K.J., 2008, FEEDBACK SYSTEMS INT, DOI DOI 10.1515/9781400828739
[5]  
Briat C, 2016, CELL SYST, V2, P15, DOI [10.1016/j.cels.2016.01.004, 10.1016/j.cels.2016.02.010]
[6]  
Cardelli Luca, 2020, Computational Methods in Systems Biology. 18th International Conference, CMSB 2020. Proceedings. Lecture Notes in Bioinformatics Subseries of Lecture Notes in Computer Science (LNBI 12314), P373, DOI 10.1007/978-3-030-60327-4_22
[7]   Stochastic analysis of Chemical Reaction Networks using Linear Noise Approximation [J].
Cardelli, Luca ;
Kwiatkowska, Marta ;
Laurenti, Luca .
BIOSYSTEMS, 2016, 149 :26-33
[8]   Two-domain DNA strand displacement [J].
Cardelli, Luca .
MATHEMATICAL STRUCTURES IN COMPUTER SCIENCE, 2013, 23 (02) :247-271
[9]   Design and Analysis of a Proportional-Integral-Derivative Controller with Biological Molecules [J].
Chevalier, Michael ;
Gomez-Schiavon, Mariana ;
Ng, Andrew H. ;
El-Samad, Hana .
CELL SYSTEMS, 2019, 9 (04) :338-+
[10]   Realizing the potential of synthetic biology [J].
Church, George M. ;
Elowitz, Michael B. ;
Smolke, Christina D. ;
Voigt, Christopher A. ;
Weiss, Ron .
NATURE REVIEWS MOLECULAR CELL BIOLOGY, 2014, 15 (04) :289-294