A hybrid inversive congruential pseudorandom number generator with high period

被引:3
作者
Riera, Constanza [1 ]
Roy, Tapabrata [2 ]
Sarkar, Santanu [2 ]
Stanica, Pantelimon [3 ]
机构
[1] Western Norway Univ Appl Sci, Dept Comp Sci Elect Engn & Math Sci, Bergen, Norway
[2] Indian Inst Technol Madras, Dept Math, Sardar Patel Rd, Chennai 600036, Tamil Nadu, India
[3] Naval Postgrad Sch, Dept Appl Math, Monterey, CA 93943 USA
来源
EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS | 2021年 / 14卷 / 01期
关键词
Pseudorandom numbers; congruences; period; lattice test; LATTICE STRUCTURE; SEQUENCES; POWER;
D O I
10.29020/nybg.ejpam.v14i1.3852
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Though generating a sequence of pseudorandom numbers by linear methods (Lehmer generator) displays acceptable behavior under some conditions of the parameters, it also has undesirable features, which makes the sequence unusable for various stochastic simulations. An extension which showed promise for such applications is a generator obtained by using a first-order recurrence based upon the inverse modulo a prime or a prime power, called inversive congruential generator (ICG). A lot of work has been dedicated to investigate the periods (under some conditions of the parameters), the lattice test passing, discrepancy and other statistical properties of such a generator. Here, we propose a new method, which we call hybrid inversive congruential generator (HICG), based upon a second order recurrence using the inverse modulo M, a power of 2. We investigate the period of this pseudorandom numbers generator (PRNG) and give necessary and sufficient conditions for our PRNG to have periods M (thereby doubling the period of the classical ICG) and M/2 (matching the one of the ICG). Moreover, we show that the lattice test complexity for a binary sequence associated to (a full period) HICG is precisely M/2.
引用
收藏
页码:1 / 18
页数:18
相关论文
共 21 条
[1]   HOW TO GENERATE CRYPTOGRAPHICALLY STRONG SEQUENCES OF PSEUDO-RANDOM BITS [J].
BLUM, M ;
MICALI, S .
SIAM JOURNAL ON COMPUTING, 1984, 13 (04) :850-864
[2]   Lattice structure and linear complexity profile of nonlinear pseudorandom number generators [J].
Dorfer, G ;
Winterhof, A .
APPLICABLE ALGEBRA IN ENGINEERING COMMUNICATION AND COMPUTING, 2003, 13 (06) :499-508
[3]  
EICHENAUER J, 1988, MATH COMPUT, V51, P757, DOI 10.1090/S0025-5718-1988-0958641-1
[4]  
EICHENAUERHERRMANN J, 1992, MATH COMPUT, V58, P775, DOI 10.1090/S0025-5718-1992-1122066-X
[5]   ON THE LATTICE STRUCTURE OF A NONLINEAR GENERATOR WITH MODULUS 2-ALPHA [J].
EICHENAUERHERRMANN, J ;
GROTHE, H ;
NIEDERREITER, H ;
TOPUZOGLU, A .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1990, 31 (01) :81-85
[6]  
EICHENAUERHERRMANN J, 1993, MATH COMPUT, V60, P375, DOI 10.1090/S0025-5718-1993-1159168-9
[7]   INVERSIVE CONGRUENTIAL PSEUDORANDOM NUMBERS - A TUTORIAL [J].
EICHENAUERHERRMANN, J .
INTERNATIONAL STATISTICAL REVIEW, 1992, 60 (02) :167-176
[8]  
EICHENAUERHERRMANN J, 1991, MATH COMPUT, V56, P297, DOI 10.1090/S0025-5718-1991-1052092-X
[9]  
EICHENAUERHERRMANN J, 1994, MATH COMPUT, V63, P293, DOI 10.1090/S0025-5718-1994-1242056-8
[10]   Pseudorandom Bits From Points on Elliptic Curves [J].
Farashahi, Reza Rezaeian ;
Shparlinski, Igor E. .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2012, 58 (02) :1242-1247