Parametric study of a novel cathode catalyst layer in proton exchange membrane fuel cells

被引:22
作者
Du, C. Y. [1 ]
Yin, G. P. [1 ]
Cheng, X. Q. [1 ]
Shi, P. F. [1 ]
机构
[1] Harbin Inst Technol, Dept Appl Chem, Harbin 150001, Peoples R China
关键词
proton exchange membrane; fuel cell; ordered cathode; optimization; mathematical model;
D O I
10.1016/j.jpowsour.2006.01.041
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
A steady-state mathematical model for the ordered cathode of proton exchange membrane fuel cells is developed to investigate the dependence of the cathode performance on the structural parameters of the catalyst layer. The model is based on the governing equations for oxygen concentration and potentials of the membrane and the solid phase, coupled by Tafel relation for the oxygen reduction reaction kinetics. The cathode current density optimization at a given electrode potential is presented with respect to nano-thread radius, porosity, platinum mass percentage, thickness, Nafion volume fraction and platinum loading of the catalyst layer. The simulation results suggest that small nano-thread radius is preferred. Except for quite low values as well as thin catalyst layers, porosity and platinum mass percentage have minor effects on cathode optimization. The cathode performance depends strongly on the catalyst layer thickness and additional attention should be paid to a thinner catalyst layer. The cathode can be efficiently optimized by increasing the highly sensitive parameters, Nation volume fraction and platinum loading, to a suitable value which must avoid significant loss of oxygen transport. (c) 2006 Elsevier B.V. All rights reserved.
引用
收藏
页码:224 / 231
页数:8
相关论文
共 19 条
[1]  
[Anonymous], FUEL CELLS B
[2]   Modelling of polymer electrolyte membrane fuel cells with variable degrees of water flooding [J].
Baschuk, JJ ;
Li, XH .
JOURNAL OF POWER SOURCES, 2000, 86 (1-2) :181-196
[3]   A MATHEMATICAL-MODEL OF THE SOLID-POLYMER-ELECTROLYTE FUEL-CELL [J].
BERNARDI, DM ;
VERBRUGGE, MW .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1992, 139 (09) :2477-2491
[4]   Modelling the PEM fuel cell cathode [J].
Broka, K ;
Ekdunge, P .
JOURNAL OF APPLIED ELECTROCHEMISTRY, 1997, 27 (03) :281-289
[5]   Investigation of platinum utilization and morphology in catalyst layer of polymer electrolyte fuel cells [J].
Cheng, XL ;
Yi, BL ;
Han, M ;
Zhang, JX ;
Qiao, YG ;
Yu, JR .
JOURNAL OF POWER SOURCES, 1999, 79 (01) :75-81
[6]   Numerical simulation of the ordered catalyst layer in cathode of Proton Exchange Membrane Fuel Cells [J].
Du, CY ;
Cheng, XQ ;
Yang, T ;
Yin, GP ;
Shi, PF .
ELECTROCHEMISTRY COMMUNICATIONS, 2005, 7 (12) :1411-1416
[7]   Porosity and catalyst utilization of thin layer cathodes in air operated PEM-fuel cells [J].
Fischer, A ;
Jindra, J ;
Wendt, H .
JOURNAL OF APPLIED ELECTROCHEMISTRY, 1998, 28 (03) :277-282
[8]   New results of PEFC electrodes produced by the DLR dry preparation technique [J].
Gülzow, E ;
Kaz, T .
JOURNAL OF POWER SOURCES, 2002, 106 (1-2) :122-125
[9]   DIFFUSION IMPEDANCE IN PLANAR, CYLINDRICAL AND SPHERICAL-SYMMETRY [J].
JACOBSEN, T ;
WEST, K .
ELECTROCHIMICA ACTA, 1995, 40 (02) :255-262
[10]   Investigation of mass-transport limitations in the solid polymer fuel cell cathode - I. Mathematical model [J].
Jaouen, F ;
Lindbergh, G ;
Sundholm, G .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2002, 149 (04) :A437-A447