Low-Input Crops as Lignocellulosic Feedstock for Second-Generation Biorefineries and the Potential of Chemometrics in Biomass Quality Control

被引:19
作者
Alzagameem, Abla [1 ,2 ]
Bergs, Michel [1 ]
Do, Xuan Tung [1 ]
Klein, Stephanie Elisabeth [1 ]
Rumpf, Jessica [1 ]
Larkins, Michael [3 ]
Monakhova, Yulia [4 ,5 ,6 ]
Pude, Ralf [7 ]
Schulze, Margit [1 ]
机构
[1] Bonn Rhein Sieg Univ Appl Sci, Dept Nat Sci, von Liebig Str 20, D-53359 Rheinbach, Germany
[2] Brandenburg Univ Technol BTU Cottbus Senftenberg, Fac Environm & Nat Sci, Pl Deutsch Einheit 1, D-03046 Cottbus, Germany
[3] North Carolina State Univ, Dept Forest Biomat, 2820 Faucette Dr Biltmore Hall, Raleigh, NC 27695 USA
[4] Spectral Serv AG, Emil Hoffmann Str 33, D-50996 Cologne, Germany
[5] Saratov NG Chernyshevskii State Univ, Inst Chem, Astrakhanskaya St 83, Saratov 410012, Russia
[6] St Petersburg State Univ, Inst Chem, 13B Univ Skaya Emb, St Petersburg 199034, Russia
[7] Univ Bonn, Fac Agr, Field Lab Campus Klein Altendorf, Campus Klein Altendorf 1, D-53359 Rheinbach, Germany
来源
APPLIED SCIENCES-BASEL | 2019年 / 9卷 / 11期
关键词
chemometrics; lignin; lignocellulosic feedstock; low-input crops; multivariate data analysis; Miscanthus; Paulownia; Silphium; SILPHIUM-PERFOLIATUM L; DILUTE-ACID PRETREATMENT; 15 MISCANTHUS GENOTYPES; BIOETHANOL PRODUCTION; TECHNOECONOMIC ANALYSIS; ENZYMATIC-HYDROLYSIS; TECHNICAL LIGNINS; ENERGY CROP; BIOENERGY; PAULOWNIA;
D O I
10.3390/app9112252
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Featured Application 1. The utilization of so-called low-input crops (i.e., Miscanthus grasses and fast-growing trees) as lignocellulosic feedstock for second generation biorefineries. 2. Lignin and lignin-derived materials as agrochemical products. 3. Chemometric methods to be used for fast and efficient lignocellulose feedstock (LCF) quality control. Abstract Lignocellulose feedstock (LCF) provides a sustainable source of components to produce bioenergy, biofuel, and novel biomaterials. Besides hard and soft wood, so-called low-input plants such as Miscanthus are interesting crops to be investigated as potential feedstock for the second generation biorefinery. The status quo regarding the availability and composition of different plants, including grasses and fast-growing trees (i.e., Miscanthus, Paulownia), is reviewed here. The second focus of this review is the potential of multivariate data processing to be used for biomass analysis and quality control. Experimental data obtained by spectroscopic methods, such as nuclear magnetic resonance (NMR) and Fourier-transform infrared spectroscopy (FTIR), can be processed using computational techniques to characterize the 3D structure and energetic properties of the feedstock building blocks, including complex linkages. Here, we provide a brief summary of recently reported experimental data for structural analysis of LCF biomasses, and give our perspectives on the role of chemometrics in understanding and elucidating on LCF composition and lignin 3D structure.
引用
收藏
页数:27
相关论文
共 147 条
[41]   Effects of process severity on the chemical structure of Miscanthus ethanol organosolv lignin [J].
El Hage, Roland ;
Brosse, Nicolas ;
Sannigrahi, Poulomi ;
Ragauskas, Arthur .
POLYMER DEGRADATION AND STABILITY, 2010, 95 (06) :997-1003
[42]   Characterization of milled wood lignin and ethanol organosolv lignin from miscanthus [J].
El Hage, Roland ;
Brosse, Nicolas ;
Chrusciel, Laurent ;
Sanchez, Christian ;
Sannigrahi, Poulomi ;
Ragauskas, Arthur .
POLYMER DEGRADATION AND STABILITY, 2009, 94 (10) :1632-1638
[43]   Introducing Miscanthus to the greening measures of the EU Common Agricultural Policy [J].
Emmerling, Christoph ;
Pude, Ralf .
GLOBAL CHANGE BIOLOGY BIOENERGY, 2017, 9 (02) :274-279
[44]   Energy balances and greenhouse gas-mitigation potentials of bioenergy cropping systems (Miscanthus, rapeseed, and maize) based on farming conditions in Western Germany [J].
Felten, Daniel ;
Froeba, Norbert ;
Fries, Jerome ;
Emmerling, Christoph .
RENEWABLE ENERGY, 2013, 55 :160-174
[45]   Properties and chemical modifications of lignin: Towards lignin-based nanomaterials for biomedical applications [J].
Figueiredo, Patricia ;
Lintinen, Kalle ;
Hirvonen, Jouni T. ;
Kostiainen, Mauri A. ;
Santos, Helder A. .
PROGRESS IN MATERIALS SCIENCE, 2018, 93 :233-269
[46]   Towards an energy efficient chemistry. Switching from fossil to bio-based products in a life cycle perspective [J].
Fiorentino, Gabriella ;
Zucaro, Amalia ;
Ulgiati, Sergio .
ENERGY, 2019, 170 :720-729
[47]   Botanical characteristics, crop management and potential of Silphium perfoliatum L. as a renewable resource for biogas production: A review [J].
Gansberger, Markus ;
Montgomery, Lucy F. R. ;
Liebhard, Peter .
INDUSTRIAL CROPS AND PRODUCTS, 2015, 63 :362-372
[48]   Characterization of lignins obtained by selective precipitation [J].
Garcia, A. ;
Toledano, A. ;
Serrano, L. ;
Eguees, I. ;
Gonzalez, M. ;
Marin, F. ;
Labidi, J. .
SEPARATION AND PURIFICATION TECHNOLOGY, 2009, 68 (02) :193-198
[49]  
Gnansounou E, 2011, BIOMASS BIOF BIOCHEM, P123
[50]   Fractionation, analysis, and PCA modeling of properties of four technical lignins for prediction of their application potential in binders [J].
Gosselink, Richard J. A. ;
van Dam, Jan E. G. ;
de Jong, Ed ;
Scott, Elinor L. ;
Sanders, Johan P. M. ;
Li, Jiebing ;
Gellerstedt, Goran .
HOLZFORSCHUNG, 2010, 64 (02) :193-200