Global organization of phase space in the transition to chaos in the Lorenz system

被引:23
作者
Doedel, Eusebius J. [1 ]
Krauskopf, Bernd [2 ]
Osinga, Hinke M. [2 ]
机构
[1] Concordia Univ, Dept Comp Sci, Montreal, PQ H3G 1M8, Canada
[2] Univ Auckland, Dept Math, Auckland 1142, New Zealand
基金
加拿大自然科学与工程研究理事会;
关键词
global invariant manifolds; global bifurcations; boundary value problem setup; INDECOMPOSABLE CONTINUA; INVARIANT-MANIFOLDS; PRETURBULENCE; BIFURCATIONS; OSCILLATIONS; COLLOCATION; BEHAVIOR; ORBITS;
D O I
10.1088/0951-7715/28/11/R113
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The transition to chaos in the Lorenz system-from simple via preturbulent to chaotic dynamics-has been characterized in terms of the dynamics and the respective attractors, as described by the one-dimensional Lorenz map. In this paper we consider how this transition manifests itself globally, that is, we determine the associated organization of the entire phase space. To this end, we study how global invariant manifolds of equilibria and periodic orbits change with the parameters; the main object of study in this context is the two-dimensional (2D) stable manifold of the origin, or Lorenz manifold. We compute two-dimensional global manifolds and their complicated intersection sets with a sphere by using a boundary value problem setup. This allows us to determine how basins of attraction change or are created, and to give a precise characterization of the observed topological and geometric properties of the relevant 2D invariant manifolds during the transition.
引用
收藏
页码:R113 / R139
页数:27
相关论文
共 50 条
[1]  
ABRAHAM RH, 1985, DYNAMICS GEOMETRY 3
[2]  
AFRAIMOVICH VS, 1977, DOKL AKAD NAUK SSSR+, V234, P336
[3]   Global Invariant Manifolds Near Homoclinic Orbits to a Real Saddle: (Non)Orientability and Flip Bifurcation [J].
Aguirre, Pablo ;
Krauskopf, Bernd ;
Osinga, Hinke M. .
SIAM JOURNAL ON APPLIED DYNAMICAL SYSTEMS, 2013, 12 (04) :1803-1846
[4]   INVESTIGATING THE CONSEQUENCES OF GLOBAL BIFURCATIONS FOR TWO-DIMENSIONAL INVARIANT MANIFOLDS OF VECTOR FIELDS [J].
Aguirre, Pablo ;
Doedel, Eusebius J. ;
Krauskopf, Bernd ;
Osinga, Hinke M. .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2011, 29 (04) :1309-1344
[5]  
Aguirre Pablo, 2014, J. Comput. Dyn, P1, DOI DOI 10.3934/JCD.2014.1.1
[6]  
[Anonymous], NONLINEAR OSCILLATIO
[7]  
ASCHER U, 1981, ACM T MATH SOFTWARE, V7, P209, DOI 10.1145/355945.355950
[8]   KNEADINGS, SYMBOLIC DYNAMICS AND PAINTING LORENZ CHAOS [J].
Barrio, Roberto ;
Shilnikov, Andrey ;
Shilnikov, Leonid .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2012, 22 (04)
[9]   THE NUMERICAL COMPUTATION OF CONNECTING ORBITS IN DYNAMIC-SYSTEMS [J].
BEYN, WJ .
IMA JOURNAL OF NUMERICAL ANALYSIS, 1990, 10 (03) :379-405
[10]  
BEYN WJ, 1990, NATO ADV SCI I C-MAT, V313, P169