A genotype network reveals homoplastic cycles of convergent evolution in influenza A (H3N2) haemagglutinin

被引:18
作者
Wagner, Andreas [1 ,2 ,3 ]
机构
[1] Univ Zurich, Inst Evolutionary Biol & Environm Sci, CH-8057 Zurich, Switzerland
[2] Swiss Inst Bioinformat, CH-1015 Lausanne, Switzerland
[3] Santa Fe Inst, Santa Fe, NM 87501 USA
基金
瑞士国家科学基金会;
关键词
evolution; networks; influenza; cycles; homoplasy; POSITIVE SELECTION; GENETIC EVOLUTION; EPISTASIS; VIRUS; SHAPES; ADAPTATION; MUTATIONS; SEQUENCES; VACCINE; LINKS;
D O I
10.1098/rspb.2013.2763
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Networks of evolving genotypes can be constructed from the worldwide time-resolved genotyping of pathogens like influenza viruses. Such genotype networks are graphs where neighbouring vertices (viral strains) differ in a single nucleotide or amino acid. A rich trove of network analysis methods can help understand the evolutionary dynamics reflected in the structure of these networks. Here, I analyse a genotype network comprising hundreds of influenza A (H3N2) haemagglutinin genes. The network is rife with cycles that reflect non-random parallel or convergent (homoplastic) evolution. These cycles also show patterns of sequence change characteristic for strong and local evolutionary constraints, positive selection and mutation-limited evolution. Such cycles would not be visible on a phylogenetic tree, illustrating that genotype network analysis can complement phylogenetic analyses. The network also shows a distinct modular or community structure that reflects temporal more than spatial proximity of viral strains, where lowly connected bridge strains connect different modules. These and other organizational patterns illustrate that genotype networks can help us study evolution in action at an unprecedented level of resolution.
引用
收藏
页数:9
相关论文
共 60 条
[1]  
[Anonymous], 2004, Inferring phylogenies
[2]  
[Anonymous], 2006, Mathematica journal, DOI DOI 10.3402/QHW.V6I2.5918
[3]  
[Anonymous], 1998, Random graphs
[4]   Asymmetric coevolutionary networks facilitate biodiversity maintenance [J].
Bascompte, J ;
Jordano, P ;
Olesen, JM .
SCIENCE, 2006, 312 (5772) :431-433
[5]   Plant-animal mutualistic networks: The architecture of biodiversity [J].
Bascompte, Jordi ;
Jordano, Pedro .
ANNUAL REVIEW OF ECOLOGY EVOLUTION AND SYSTEMATICS, 2007, 38 :567-593
[6]  
Bastian M., 2009, INT AAAI C WEBL SOC, DOI DOI 10.13140/2.1.1341.1520
[7]   Canalization of the evolutionary trajectory of the human influenza virus [J].
Bedford, Trevor ;
Rambaut, Andrew ;
Pascual, Mercedes .
BMC BIOLOGY, 2012, 10
[8]   Robustness-epistasis link shapes the fitness landscape of a randomly drifting protein [J].
Bershtein, Shimon ;
Segal, Michal ;
Bekerman, Roy ;
Tokuriki, Nobuhiko ;
Tawfik, Dan S. .
NATURE, 2006, 444 (7121) :929-932
[9]   The Genomic Rate of Molecular Adaptation of the Human Influenza A Virus [J].
Bhatt, Samir ;
Holmes, Edward C. ;
Pybus, Oliver G. .
MOLECULAR BIOLOGY AND EVOLUTION, 2011, 28 (09) :2443-2451
[10]   Evidence for positive epistasis in HIV-1 [J].
Bonhoeffer, S ;
Chappey, C ;
Parkin, NT ;
Whitcomb, JM ;
Petropoulos, CJ .
SCIENCE, 2004, 306 (5701) :1547-1550