Subsquare-free Latin squares of odd order

被引:9
作者
Maenhaut, Barbara [1 ]
Wanless, Ian M.
Webb, Bridget S.
机构
[1] Univ Queensland, Dept Math, Brisbane, Qld 4072, Australia
[2] Australian Natl Univ, Dept Comp Sci, Canberra, ACT 0200, Australia
[3] Open Univ, Dept Pure Math, Milton Keynes MK7 6AA, Bucks, England
关键词
D O I
10.1016/j.ejc.2005.07.002
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For every odd positive integer m we prove the existence of a Latin square of order 3m having no proper Latin subsquares. Combining this with previously known results it follows that subsquare-free Latin squares exist for all odd orders. (c) 2005 Elsevier Ltd. All rights reserved.
引用
收藏
页码:322 / 336
页数:15
相关论文
共 9 条
[1]  
Andersen L.D, 1982, ALGEBR GEOM TOPOL, V65, P9
[2]  
[Anonymous], 1992, AUSTRALAS J COMBIN
[3]  
DENES J, 1991, ANN DISCRETE MATH
[4]  
Denes J., 1974, LATIN SQUARES THEIR
[5]  
DENNISTON RHF, 1978, UTILITAS MATHEMATICA, V13, P299
[6]   Most Latin squares have many subsquares [J].
McKay, BD ;
Wanless, IM .
JOURNAL OF COMBINATORIAL THEORY SERIES A, 1999, 86 (02) :323-347
[7]   Diagonally cyclic latin squares [J].
Wanless, IM .
EUROPEAN JOURNAL OF COMBINATORICS, 2004, 25 (03) :393-413
[8]  
Wanless IM, 2001, J COMB DES, V9, P128, DOI 10.1002/1520-6610(2001)9:2<128::AID-JCD1003>3.0.CO
[9]  
2-C