Fine microstructure of high performance electrode in alkaline anion exchange membrane fuel cells

被引:55
|
作者
Yang, Donglei [1 ,2 ,3 ]
Yu, Hongmei [1 ,2 ]
Li, Guangfu [1 ,2 ]
Zhao, Yun [1 ,2 ]
Liu, Yanxi [1 ,2 ]
Zhang, Changkun [1 ,2 ,3 ]
Song, Wei [1 ,2 ]
Shao, Zhigang [1 ,2 ]
机构
[1] Dalian Natl Lab Clean Energy, Dalian 116023, Peoples R China
[2] Chinese Acad Sci, Dalian Inst Chem Phys, Dalian 116023, Peoples R China
[3] Univ Chinese Acad Sci, Beijing 100039, Peoples R China
基金
中国国家自然科学基金; 国家高技术研究发展计划(863计划);
关键词
Alkaline anion exchange membrane fuel cell; Dispersion solvent; Electrode microstructure; Ionomer content; Three phase boundary; POLYMER ELECTROLYTE; OXYGEN ELECTROREDUCTION; DISPERSION SOLVENT; EMPIRICAL-EQUATION; CATALYST LAYER; IONOMER; NAFION; ASSEMBLIES; OPTIMIZATION; HYDROXIDE;
D O I
10.1016/j.jpowsour.2014.04.053
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The electrode fabrication and resulting microstructure are the main determinates of the performance of alkaline anion exchange membrane fuel cells (AAEMFCs). In the present work, the electrode microstructure is adjusted by the ionomer content in catalyst layers as well as the dispersion solvent for catalyst inks. The ionomer content shows a strong influence on the cell active, ohmic and mass-diffusion polarization losses. Especially, an in-suit proof for the ionomer as the hydroxide conductor is first given by the cell cycle voltammogram, and the optimum content is 20 wt.%. Meanwhile, it is found that the ionomer either dissolves in the dielectric constant epsilon = 183-24.3 solutions (including ethanol, propanol and isopropanol) or disperses in the n-butyl acetate (epsilon = 5.01) colloid. Compared with these electrodes using the solution method, the colloidal electrode tends to form the larger catalyst/ionomer agglomerates, increased pore volume and pore diameter, continuous ionomer networks for hydroxide conduction, and correspondingly decreased ohmic and mass-diffusion polarization losses. Ultimately, when employing the optimum ionomer content and the colloid approach, the highest peak power density we achieved in AAEMFC is 407 mW cm(-2) at 50 degrees C, which can be taken as a considerable success in comparison to the current results in publications. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:39 / 47
页数:9
相关论文
共 50 条
  • [1] High performance anion exchange ionomer for anion exchange membrane fuel cells
    Gao, Xueqiang
    Yu, Hongmei
    Jia, Jia
    Hao, Jinkai
    Xie, Feng
    Chi, Jun
    Qin, Bowen
    Fu, Li
    Song, Wei
    Shao, Zhigang
    RSC ADVANCES, 2017, 7 (31): : 19153 - 19161
  • [2] High-performance alkaline fuel cells using crosslinked composite anion exchange membrane
    Zhao, Yun
    Yu, Hongmei
    Yang, Donglei
    Li, Jin
    Shao, Zhigang
    Yi, Baolian
    JOURNAL OF POWER SOURCES, 2013, 221 : 247 - 251
  • [3] Membrane electrode assemblies based on porous silver electrodes for alkaline anion exchange membrane fuel cells
    Kucernak, A.
    Bidault, F.
    Smith, G.
    ELECTROCHIMICA ACTA, 2012, 82 : 284 - 290
  • [4] The effect of electrode parameters on the performance of anion exchange polymer membrane fuel cells
    Mamlouk, M.
    Scott, K.
    Horsfall, J. A.
    Williams, C.
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2011, 36 (12) : 7191 - 7198
  • [5] High-performance alkaline ionomer for alkaline exchange membrane fuel cells
    Zeng, L.
    Zhao, T. S.
    ELECTROCHEMISTRY COMMUNICATIONS, 2013, 34 : 278 - 281
  • [6] Anion Exchange Membrane and Ionomer for Alkaline Membrane Fuel Cells (AMFCs)
    Yanagi, Hiroyuki
    Fukuta, Kenji
    PROTON EXCHANGE MEMBRANE FUEL CELLS 8, PTS 1 AND 2, 2008, 16 (02): : 257 - 262
  • [7] A high-performance integrated electrode for anion-exchange membrane direct ethanol fuel cells
    Li, Y. S.
    Zhao, T. S.
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2011, 36 (13) : 7707 - 7713
  • [8] Advances and challenges in alkaline anion exchange membrane fuel cells
    Pan, Z. F.
    An, L.
    Zhao, T. S.
    Tang, Z. K.
    PROGRESS IN ENERGY AND COMBUSTION SCIENCE, 2018, 66 : 141 - 175
  • [9] Alkaline membrane fuel cells: anion exchange membranes and fuels
    Hren, Masa
    Bozic, Mojca
    Fakin, Darinka
    Kleinschek, Karin Stana
    Gorgieva, Selestina
    SUSTAINABLE ENERGY & FUELS, 2021, 5 (03) : 604 - 637
  • [10] Surface Adsorption Affects the Performance of Alkaline Anion-Exchange Membrane Fuel Cells
    Maurya, Sandip
    Dumont, Joseph H.
    Villarrubia, Claudia Narvaez
    Matanovic, Ivana
    Li, Dongguo
    Kim, Yu Seung
    Noh, Sangtaik
    Han, Junyoung
    Bae, Chulsung
    Miller, Hamish A.
    Fujimoto, Cy H.
    Dekel, Dario R.
    ACS CATALYSIS, 2018, 8 (10): : 9429 - 9439