Bifurcation analysis and solitary-like wave solutions for extended (2+1)-dimensional Konopelchenko-Dubrovsky equations

被引:0
作者
Li, Yin [1 ,2 ]
Li, Shaoyong [1 ]
Wei, Ruiying [1 ]
机构
[1] Shaoguan Univ, Sch Math & Stat, Shaoguan 512005, Peoples R China
[2] Yunnan Univ, Sch Math & Stat, Kunming 650091, Peoples R China
基金
中国国家自然科学基金;
关键词
Extended (2+1)-dimensional Konopelchenko-Dubrovsky equations; Bifurcation analysis; Solitary-like wave solutions; Sub-equation expansion method; NONLINEAR EVOLUTION-EQUATIONS; BURGERS-TYPE EQUATIONS; KADOMTSEV-PETVIASHVILI EQUATION; SYMBOLIC COMPUTATION; KDV-TYPE; GARDNER EQUATION; EXPANSION METHOD; ORDER; SOLITONS; TERMS;
D O I
10.1007/s11071-016-3264-5
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
In this paper, the bifurcation analysis as well as the sub-equation expansion method will be applied to study the extended (2 + 1)-dimensional Konopelchenko-Dubrovsky equations. The bifurcation analysis is first used to obtain the existence of traveling wave solutions. Then via the sub-equation expansion method, some new solitary-like wave solutions for each parameter condition are obtained.
引用
收藏
页码:609 / 622
页数:14
相关论文
共 29 条
[1]   Applications of the extended tanh method for coupled nonlinear evolution equations [J].
Bekir, Ahmet .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2008, 13 (09) :1748-1757
[2]   General projective Riccati equation method and exact solutions for generalized KdV-type and KdV-Burgers-type equations with nonlinear terms of any order [J].
Chen, Y ;
Li, B .
CHAOS SOLITONS & FRACTALS, 2004, 19 (04) :977-984
[3]  
Chen Y, 2003, COMMUN THEOR PHYS, V40, P137
[4]   COMBINED PARTIAL-DIFFERENTIAL-EQUATION AND RIEMANN-HILBERT INVERSE METHODS FOR INTEGRABLE NONLINEAR EVOLUTION-EQUATIONS IN (2+1) DIMENSIONS [J].
JIANG, Z ;
BULLOUGH, RK .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1987, 20 (07) :L429-L435
[5]   Exact solutions of a generalized (3+1)-dimensional Kadomtsev-Petviashvili equation using Lie symmetry analysis [J].
Khalique, Chaudry Masood ;
Adem, Abdullahi R. .
APPLIED MATHEMATICS AND COMPUTATION, 2010, 216 (10) :2849-2854
[6]   SOME NEW INTEGRABLE NONLINEAR EVOLUTION-EQUATIONS IN 2 + 1 DIMENSIONS [J].
KONOPELCHENKO, BG ;
DUBROVSKY, VG .
PHYSICS LETTERS A, 1984, 102 (1-2) :15-17
[7]   On exact solutions of the nonlinear Schrodinger equations in optical fiber [J].
Li, B ;
Chen, Y .
CHAOS SOLITONS & FRACTALS, 2004, 21 (01) :241-247
[8]   Auto-Backlund transformation and exact solutions for compound KdV-type and compound KdV-Burgers-type equations with nonlinear terms of any order [J].
Li, B ;
Chen, Y ;
Zhang, HQ .
PHYSICS LETTERS A, 2002, 305 (06) :377-382
[9]   Explicit exact solutions for new general two-dimensional KdV-type and two-dimensional KdV-Burgers-type equations with nonlinear terms of any order [J].
Li, B ;
Chen, Y ;
Zhang, HQ .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2002, 35 (39) :8253-8265
[10]   Smooth and non-smooth traveling waves in a nonlinearly dispersive equation [J].
Li, JB ;
Liu, ZR .
APPLIED MATHEMATICAL MODELLING, 2000, 25 (01) :41-56