Numerical simulation of Black-Scholes model for American options

被引:0
作者
Khaliq, AQM [1 ]
Voss, DA [1 ]
Kazmi, SK [1 ]
机构
[1] Western Illinois Univ, Dept Math, Macomb, IL 61455 USA
来源
IEEE INMIC 2001: IEEE INTERNATIONAL MULTI TOPIC CONFERENCE 2001, PROCEEDINGS: TECHNOLOGY FOR THE 21ST CENTURY | 2001年
关键词
Black-Scholes model; linearly-implicit methods; theta-methods;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We consider the penalty method approach, and corresponding numerical schemes, for solving the Black-Scholes model of the American Option. Standard methods involve the need to solve a system of nonlinear equations, evolving from the finite difference discretization of the nonlinear Black-Scholes model, at each time step by a Newton-type iterative procedure. We analyze the well-known linearly implicit theta-methods that arise by treating the nonlinear penalty term explicitly thus avoiding iteration. In addition, we have implemented an adaptive time step control strategy to increase computational efficiency.
引用
收藏
页码:118 / 123
页数:6
相关论文
共 11 条
  • [1] [Anonymous], 2000, An Introduction to the Mathematics of Financial Derivatives
  • [2] PRICING OF OPTIONS AND CORPORATE LIABILITIES
    BLACK, F
    SCHOLES, M
    [J]. JOURNAL OF POLITICAL ECONOMY, 1973, 81 (03) : 637 - 654
  • [3] El Karoui N, 1998, MATH FINANC, V8, P93
  • [4] HULL JC, 1997, OPTIONS FUTURES DERI
  • [5] AN A POSTERIORI ERROR ESTIMATE AND ADAPTIVE TIMESTEP CONTROL FOR A BACKWARD EULER DISCRETIZATION OF A PARABOLIC PROBLEM
    JOHNSON, C
    NIE, YY
    THOMEE, V
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 1990, 27 (02) : 277 - 291
  • [6] LITTLE T, 2000, J COMPUT FINANC, V4, P5
  • [7] THEORY OF RATIONAL OPTION PRICING
    MERTON, RC
    [J]. BELL JOURNAL OF ECONOMICS, 1973, 4 (01): : 141 - 183
  • [8] NIELSEN B, IN PRESS COMPUTATION
  • [9] Stampi J., 2001, MATH FINANCE MODELIN
  • [10] Wilmott P., 1993, OPTION PRICING MATH