Q(√-3)-Integral Points on a Mordell Curve

被引:0
作者
Bianchi, Francesca [1 ]
机构
[1] Univ Groningen, Bernoulli Inst Math Comp Sci & Artificial Intelli, Groningen, Netherlands
来源
MATHEMATICAL SOFTWARE - ICMS 2020 | 2020年 / 12097卷
关键词
Elliptic curves; Quadratic Chabauty; Integral points; ELLIPTIC-CURVES; ALIQUOT CYCLES; AMICABLE PAIRS;
D O I
暂无
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We use an extension of quadratic Chabauty to number fields, recently developed by the author with Balakrishnan, Besser and Muller, combined with a sieving technique, to determine the integral points over Q(root -3) on the Mordell curve y(2) = x(3) - 4.
引用
收藏
页码:39 / 50
页数:12
相关论文
共 25 条
[1]  
[Anonymous], 1998, LONDON MATH SOC STUD
[2]  
[Anonymous], 1982, PROGR MATH
[3]  
Balakrishnan J.S., 2019, ISR J MATH
[4]   A non-abelian conjecture of Tate-Shafarevich type for hyperbolic curves [J].
Balakrishnan, Jennifer S. ;
Dan-Cohen, Ishai ;
Kim, Minhyong ;
Wewers, Stefan .
MATHEMATISCHE ANNALEN, 2018, 372 (1-2) :369-428
[5]   QUADRATIC CHABAUTY AND RATIONAL POINTS, I: p-ADIC HEIGHTS [J].
Balakrishnan, Jennifer S. ;
Dogra, Netan .
DUKE MATHEMATICAL JOURNAL, 2018, 167 (11) :1981-2038
[6]   COMPUTING INTEGRAL POINTS ON HYPERELLIPTIC CURVES USING QUADRATIC CHABAUTY [J].
Balakrishnan, Jennifer S. ;
Besser, Amnon ;
Mueller, J. Steffen .
MATHEMATICS OF COMPUTATION, 2017, 86 (305) :1403-1434
[7]   Quadratic Chabauty: p-adic heights and integral points on hyperelliptic curves [J].
Balakrishnan, Jennifer S. ;
Besser, Amnon ;
Mueller, J. Steffen .
JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2016, 720 :51-79
[8]   MASSEY PRODUCTS FOR ELLIPTIC CURVES OF RANK 1 (vol 23, pg 725, 2010) [J].
Balakrishnan, Jennifer S. ;
Kedlaya, Kiran S. ;
Kim, Minhyong .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2011, 24 (01) :281-291
[9]  
Bernardi Dominique., 1981, SEMINAR NUMBER THEOR, V12, P1
[10]  
Bianchi F., SAGEMATH CODE