Solving the electrical impedance tomography inverse problem for logarithmic conductivity: Numerical sensitivity

被引:2
|
作者
Pellegrini, Sergio P. [1 ]
Trigo, Flavio C. [1 ]
Lima, Raul G. [1 ]
机构
[1] Univ Sao Paulo, Dept Mech Engn, Escola Politecn, Sao Paulo, Brazil
关键词
Inverse problems; Electrical impedance tomography; Solution space parametrization; RECONSTRUCTION; EIT;
D O I
10.1108/COMPEL-11-2016-0501
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
PurposeIn the context of electrical impedance tomography (EIT), this paper aims to evaluate limitations of estimating conductivity or resistivity, as well as the improvements achieved with the use of an alternate description of the solution space, the logarithmic conductivity. Design/methodology/approachA quantitative analysis is performed, solving the inverse EIT problem by using the Gauss-Newton and non-linear conjugate gradient methods for a numerical phantom of 15 elements. A property of symmetry is studied for the direct EIT problem for a phantom of 385,601 elements. FindingsSolving the inverse EIT problem in logarithmic conductivity is more robust to the initial guess, as solutions are kept within physical bounds (conductivity positiveness). Also, convergence is faster and less dependent on the final values of the estimates. Research limitations/implicationsLogarithmic conductivity provides an advantageous description of the solution space for the EIT inverse problem. Similar estimation problems might be subject to analogous conclusions. Originality/valueThis study provides a novel analysis, quantitatively comparing the effect of different variables to solve the inverse EIT problem.
引用
收藏
页码:681 / 690
页数:10
相关论文
共 50 条
  • [41] Numerical solution of an inverse electrocardiography problem for a medium with piecewise constant electrical conductivity
    A. M. Denisov
    E. V. Zakharov
    A. V. Kalinin
    V. V. Kalinin
    Computational Mathematics and Mathematical Physics, 2010, 50 : 1172 - 1177
  • [42] A Novel Method for the Numerical Solution of a Hybrid Inverse Problem of Electrical Conductivity Imaging
    Timonov A.
    Journal of Mathematical Sciences, 2023, 273 (4) : 511 - 526
  • [43] Reconstructing the conductivity of nodes in electrical impedance tomography
    Li, XL
    He, XB
    Zhou, SC
    PROCEEDINGS OF THE 20TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY, VOL 20, PTS 1-6: BIOMEDICAL ENGINEERING TOWARDS THE YEAR 2000 AND BEYOND, 1998, 20 : 1036 - 1037
  • [44] Imaging the complex conductivity in electrical impedance tomography
    Shallof, AM
    Barber, DC
    INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, PROCEEDINGS - VOL III, 1996, : 543 - 546
  • [45] AN INVERSE BACKSCATTER PROBLEM FOR ELECTRIC IMPEDANCE TOMOGRAPHY
    Hanke, Martin
    Hyvonen, Nuutti
    Reusswig, Stefanie
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2009, 41 (05) : 1948 - 1966
  • [46] Object Analysis Using Machine Learning to Solve Inverse Problem in Electrical Impedance Tomography
    Rymarczyk, Tomasz
    Kozlowski, Edward
    Klosowski, Grzegorz
    2018 IEEE INTERNATIONAL CONFERENCE ON IMAGING SYSTEMS AND TECHNIQUES (IST), 2018, : 220 - 225
  • [47] Validation of a multilayer perceptron for rapid, direct solution of the electrical impedance tomography inverse problem
    Wertz, John
    Flournoy, Chenoa
    Homa, Laura
    Tallman, Tyler
    MRS COMMUNICATIONS, 2024, 14 (05) : 976 - 982
  • [48] A novel combination method of electrical impedance-tomography inverse problem for brain imaging
    Li, Y
    Rao, LY
    He, RJ
    Xu, GZ
    Wu, Q
    Yan, WL
    Dong, GY
    Yang, QX
    IEEE TRANSACTIONS ON MAGNETICS, 2005, 41 (05) : 1848 - 1851
  • [49] AN INVERSE BACKSCATTER PROBLEM FOR ELECTRIC IMPEDANCE TOMOGRAPHY
    Hanke, Martin
    Hyvonen, Nuutti
    Reusswig, Stefanie
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2011, 43 (03) : 1495 - 1497
  • [50] Fast and Accurate Solution of the Inverse Problem for Image Reconstruction Using Electrical Impedance Tomography
    Martin, Sebastien
    Choi, Charles T. M.
    IEEE TRANSACTIONS ON MAGNETICS, 2019, 55 (06)