Solving the electrical impedance tomography inverse problem for logarithmic conductivity: Numerical sensitivity

被引:2
|
作者
Pellegrini, Sergio P. [1 ]
Trigo, Flavio C. [1 ]
Lima, Raul G. [1 ]
机构
[1] Univ Sao Paulo, Dept Mech Engn, Escola Politecn, Sao Paulo, Brazil
关键词
Inverse problems; Electrical impedance tomography; Solution space parametrization; RECONSTRUCTION; EIT;
D O I
10.1108/COMPEL-11-2016-0501
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
PurposeIn the context of electrical impedance tomography (EIT), this paper aims to evaluate limitations of estimating conductivity or resistivity, as well as the improvements achieved with the use of an alternate description of the solution space, the logarithmic conductivity. Design/methodology/approachA quantitative analysis is performed, solving the inverse EIT problem by using the Gauss-Newton and non-linear conjugate gradient methods for a numerical phantom of 15 elements. A property of symmetry is studied for the direct EIT problem for a phantom of 385,601 elements. FindingsSolving the inverse EIT problem in logarithmic conductivity is more robust to the initial guess, as solutions are kept within physical bounds (conductivity positiveness). Also, convergence is faster and less dependent on the final values of the estimates. Research limitations/implicationsLogarithmic conductivity provides an advantageous description of the solution space for the EIT inverse problem. Similar estimation problems might be subject to analogous conclusions. Originality/valueThis study provides a novel analysis, quantitatively comparing the effect of different variables to solve the inverse EIT problem.
引用
收藏
页码:681 / 690
页数:10
相关论文
共 50 条
  • [31] THE ACCESSMENT OF SENSITIVITY IN ELECTRICAL IMPEDANCE TOMOGRAPHY BY NORMAL TRANSFORMATION METHOD
    Sushko, I.
    Rybin, A.
    Chekerys, I.
    VISNYK NTUU KPI SERIIA-RADIOTEKHNIKA RADIOAPARATOBUDUVANNIA, 2014, (59): : 111 - 120
  • [32] Recursive estimation of fast impedance changes in electrical impedance tomography and a related problem
    Kaipio, JP
    Somersalo, E
    Karjalainen, PA
    Vauhkonen, M
    COMPUTATIONAL, EXPERIMENTAL, AND NUMERICAL METHODS FOR SOLVING ILL-POSED INVERSE IMAGING PROBLEMS: MEDICAL AND NONMEDICAL APPLICATIONS, 1997, 3171 : 208 - 216
  • [33] Expectation propagation for nonlinear inverse problems - with an application to electrical impedance tomography
    Gehre, Matthias
    Jin, Bangti
    JOURNAL OF COMPUTATIONAL PHYSICS, 2014, 259 : 513 - 535
  • [34] Comparison of electrical impedance tomography inverse solver approaches for damage sensing
    Zhao, Yingjun
    Wang, Long
    Gupta, Sumit
    Loh, Kenneth J.
    Schagerl, Martin
    NONDESTRUCTIVE CHARACTERIZATION AND MONITORING OF ADVANCED MATERIALS, AEROSPACE, AND CIVIL INFRASTRUCTURE 2017, 2017, 10169
  • [35] Sensitivity volume as figure-of-merit for maximizing data importance in electrical impedance tomography
    Onsager, Claire C.
    Wang, Chulin
    Costakis, Charles
    Aygen, Can C.
    Lang, Lauren
    van der Lee, Suzan
    Grayson, Matthew A.
    PHYSIOLOGICAL MEASUREMENT, 2024, 45 (04)
  • [36] A Fast Parallel Solver for the Forward Problem in Electrical Impedance Tomography
    Jehl, Markus
    Dedner, Andreas
    Betcke, Timo
    Aristovich, Kirll
    Kloefkorn, Robert
    Holder, David
    IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2015, 62 (01) : 126 - 137
  • [37] Dynamic inverse obstacle problems with electrical impedance tomography
    Kim, KY
    Kim, BS
    Kim, MC
    Kim, S
    MATHEMATICS AND COMPUTERS IN SIMULATION, 2004, 66 (4-5) : 399 - 408
  • [38] Parametric Detection and Classification of Compact Conductivity Contrasts With Electrical Impedance Tomography
    Samore, Andrea
    Guermandi, Marco
    Placati, Silvio
    Guerrieri, Roberto
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2017, 66 (10) : 2666 - 2679
  • [39] The application of electrical impedance tomography to reduce systematic errors in the EEG inverse problem -: a simulation study
    Gonçalves, S
    de Munck, JC
    Heethaar, RM
    da Silva, FHL
    van Dijk, BW
    PHYSIOLOGICAL MEASUREMENT, 2000, 21 (03) : 379 - 393
  • [40] Comparison of Different Radial Basis Function Networks for the Electrical Impedance Tomography (EIT) Inverse Problem
    Faiyaz, Chowdhury Abrar
    Shahrear, Pabel
    Shamim, Rakibul Alam
    Strauss, Thilo
    Khan, Taufiquar
    ALGORITHMS, 2023, 16 (10)