Solving the electrical impedance tomography inverse problem for logarithmic conductivity: Numerical sensitivity

被引:2
|
作者
Pellegrini, Sergio P. [1 ]
Trigo, Flavio C. [1 ]
Lima, Raul G. [1 ]
机构
[1] Univ Sao Paulo, Dept Mech Engn, Escola Politecn, Sao Paulo, Brazil
关键词
Inverse problems; Electrical impedance tomography; Solution space parametrization; RECONSTRUCTION; EIT;
D O I
10.1108/COMPEL-11-2016-0501
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
PurposeIn the context of electrical impedance tomography (EIT), this paper aims to evaluate limitations of estimating conductivity or resistivity, as well as the improvements achieved with the use of an alternate description of the solution space, the logarithmic conductivity. Design/methodology/approachA quantitative analysis is performed, solving the inverse EIT problem by using the Gauss-Newton and non-linear conjugate gradient methods for a numerical phantom of 15 elements. A property of symmetry is studied for the direct EIT problem for a phantom of 385,601 elements. FindingsSolving the inverse EIT problem in logarithmic conductivity is more robust to the initial guess, as solutions are kept within physical bounds (conductivity positiveness). Also, convergence is faster and less dependent on the final values of the estimates. Research limitations/implicationsLogarithmic conductivity provides an advantageous description of the solution space for the EIT inverse problem. Similar estimation problems might be subject to analogous conclusions. Originality/valueThis study provides a novel analysis, quantitatively comparing the effect of different variables to solve the inverse EIT problem.
引用
收藏
页码:681 / 690
页数:10
相关论文
共 50 条
  • [21] The Effect of Internal Electrodes on Electrical Impedance Tomography Sensitivity
    Stowe, Symon
    Adler, Andy
    42ND ANNUAL INTERNATIONAL CONFERENCES OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY: ENABLING INNOVATIVE TECHNOLOGIES FOR GLOBAL HEALTHCARE EMBC'20, 2020, : 1457 - 1460
  • [22] Advances in Electrical Impedance Tomography Inverse Problem Solution Methods: From Traditional Regularization to Deep Learning
    Dimas, Christos
    Alimisis, Vassilis
    Uzunoglu, Nikolaos
    Sotiriadis, Paul P.
    IEEE ACCESS, 2024, 12 : 47797 - 47829
  • [23] Numerical method for solving a two-dimensional electrical impedance tomography problem in the case of measurements on part of the outer boundary
    Gavrilov, S. V.
    Denisov, A. M.
    COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS, 2014, 54 (11) : 1690 - 1699
  • [24] Solving electrical impedance tomography with deep learning
    Fan, Yuwei
    Ying, Lexing
    JOURNAL OF COMPUTATIONAL PHYSICS, 2020, 404
  • [25] Imaging of electrode movement and conductivity change in Electrical Impedance Tomography
    Gomez-Laberge, Camille
    Adler, Andy
    2006 CANADIAN CONFERENCE ON ELECTRICAL AND COMPUTER ENGINEERING, VOLS 1-5, 2006, : 1029 - +
  • [26] ESTIMATION OF CONDUCTIVITY CHANGES IN A REGION OF INTEREST WITH ELECTRICAL IMPEDANCE TOMOGRAPHY
    Liu, Dong
    Kolehmainen, Ville
    Siltanen, Samuli
    Laukkanen, Anne-Maria
    Seppanen, Aku
    INVERSE PROBLEMS AND IMAGING, 2015, 9 (01) : 211 - 229
  • [27] AUTOMATIC SEGMENTATION OF CONDUCTIVITY CHANGES IN ELECTRICAL IMPEDANCE TOMOGRAPHY IMAGES
    Zifan, A.
    Liatsis, P.
    Kantartzis, P.
    Vargas-Canas, R.
    BIOSIGNALS 2011, 2011, : 215 - 220
  • [28] Signal conditioning using logarithmic amplifier for biomedical applications of electrical impedance tomography
    Saxena, M.
    Gharpure, D. C.
    Wagh, V. G.
    PHYSIOLOGICAL MEASUREMENT, 2020, 41 (11)
  • [29] A Parametric Level set Method for Imaging Multiphase Conductivity Using Electrical Impedance Tomography
    Liu, Dong
    Zhao, Yuxi
    Khambampati, Anil Kumar
    Seppanen, Aku
    Du, Jiangfeng
    IEEE TRANSACTIONS ON COMPUTATIONAL IMAGING, 2018, 4 (04): : 552 - 561
  • [30] RECONSTRUCTION OF DOMAIN BOUNDARY AND CONDUCTIVITY IN ELECTRICAL IMPEDANCE TOMOGRAPHY USING THE APPROXIMATION ERROR APPROACH
    Nissinen, Antti
    Kolehmainen, Ville
    Kaipio, Jari P.
    INTERNATIONAL JOURNAL FOR UNCERTAINTY QUANTIFICATION, 2011, 1 (03) : 203 - 222