Solving the electrical impedance tomography inverse problem for logarithmic conductivity: Numerical sensitivity

被引:2
|
作者
Pellegrini, Sergio P. [1 ]
Trigo, Flavio C. [1 ]
Lima, Raul G. [1 ]
机构
[1] Univ Sao Paulo, Dept Mech Engn, Escola Politecn, Sao Paulo, Brazil
关键词
Inverse problems; Electrical impedance tomography; Solution space parametrization; RECONSTRUCTION; EIT;
D O I
10.1108/COMPEL-11-2016-0501
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
PurposeIn the context of electrical impedance tomography (EIT), this paper aims to evaluate limitations of estimating conductivity or resistivity, as well as the improvements achieved with the use of an alternate description of the solution space, the logarithmic conductivity. Design/methodology/approachA quantitative analysis is performed, solving the inverse EIT problem by using the Gauss-Newton and non-linear conjugate gradient methods for a numerical phantom of 15 elements. A property of symmetry is studied for the direct EIT problem for a phantom of 385,601 elements. FindingsSolving the inverse EIT problem in logarithmic conductivity is more robust to the initial guess, as solutions are kept within physical bounds (conductivity positiveness). Also, convergence is faster and less dependent on the final values of the estimates. Research limitations/implicationsLogarithmic conductivity provides an advantageous description of the solution space for the EIT inverse problem. Similar estimation problems might be subject to analogous conclusions. Originality/valueThis study provides a novel analysis, quantitatively comparing the effect of different variables to solve the inverse EIT problem.
引用
收藏
页码:681 / 690
页数:10
相关论文
共 50 条
  • [1] Solving the Electrical Impedance Tomography (EIT) inverse problem by the conductivity and back projection methods
    Rybina, I. O.
    Rybin, O. I.
    Sharpan, O. B.
    VISNYK NTUU KPI SERIIA-RADIOTEKHNIKA RADIOAPARATOBUDUVANNIA, 2011, (45): : 33 - 45
  • [2] Numerical Resolution of the Electrical Impedance Tomography Inverse Problem with Fixed Inclusions
    Velasco, Arrianne Crystal
    Darbas, Marion
    Mendoza, Renier
    INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTER SCIENCE, 2021, 16 (03): : 1063 - 1076
  • [3] FEATURES OF SOLVING THE ELECTRICAL IMPEDANCE TOMOGRAPHY INVERSE PROBLEM BY ZONES CONDUCTIVITIES METHOD
    Sushko, I.
    Rybin, O.
    VISNYK NTUU KPI SERIIA-RADIOTEKHNIKA RADIOAPARATOBUDUVANNIA, 2012, (51): : 106 - 114
  • [4] Approximation of the inverse electrical impedance tomography problem by an inverse transmission problem
    Hofmann, B
    INVERSE PROBLEMS, 1998, 14 (05) : 1171 - 1187
  • [5] A New Algorithm for Electrical Impedance Tomography Inverse Problem
    Kriz, T.
    Dedkova, J.
    PIERS 2009 BEIJING: PROGESS IN ELECTROMAGNETICS RESEARCH SYMPOSIUM, PROCEEDINGS I AND II, 2009, : 127 - 131
  • [6] The Linearized Inverse Problem in Multifrequency Electrical Impedance Tomography
    Alberti, Giovanni S.
    Ammari, Habib
    Jin, Bangti
    Seo, Jin-Keun
    Zhang, Wenlong
    SIAM JOURNAL ON IMAGING SCIENCES, 2016, 9 (04): : 1525 - 1551
  • [7] Speeding up the Tikhonov regularization iterative procedure in solving the inverse problem of electrical impedance tomography
    Sushko I.A.
    Rybin A.I.
    Radioelectronics and Communications Systems, 2015, 58 (09) : 426 - 433
  • [8] Solving the inverse problem if impedance tomography using the method of modifications
    Kievskij Politekhnicheskij Inst, Kiev, Ukraine
    Izvestiya VUZ: Radioelektronika, 1998, 41 (08): : 36 - 44
  • [9] MODIFIKATION OF ITERATION ALGORITHM FOR COMPUTING THE SURFACE CONDUCTIVITIES INCREMENTS SOLVING THE INVERSE PROBLEM OF ELECTRICAL IMPEDANCE TOMOGRAPHY
    Sushko, I
    VISNYK NTUU KPI SERIIA-RADIOTEKHNIKA RADIOAPARATOBUDUVANNIA, 2014, (57): : 23 - 34
  • [10] Solving inverse problemin electrical impedance tomography by usingmultilevel sets idea
    Rymarczyk, Tomasz
    Filipowicz, Stefan F.
    Sikora, Jan
    Acta Technica CSAV (Ceskoslovensk Akademie Ved), 2010, 55 (03): : 287 - 299