Proposal of a Predictive Mixed Experimental- Numerical Approach for Assessing the Performance of Farm Tractor Engines Fuelled with Diesel- Biodiesel-Bioethanol Blends

被引:17
作者
Bietresato, Marco [1 ]
Caligiuri, Carlo [1 ]
Bolla, Anna [1 ]
Renzi, Massimiliano [1 ]
Mazzetto, Fabrizio [1 ]
机构
[1] Free Univ Bozen Bolzano, Fac Sci & Technol, Piazza Univ 5, I-39100 Bolzano, Italy
关键词
farm tractor; diesel engine; response surface method; biodiesel; bioethanol; kinematic viscosity; engine performances; CO and NOx emissions; exhaust gases opacity; COMPRESSION IGNITION ENGINE; SURFACE METHODOLOGY RSM; MULTIOBJECTIVE OPTIMIZATION; EMISSION CHARACTERISTICS; EXHAUST EMISSIONS; NEURAL-NETWORK; COMBUSTION; PARAMETERS; OIL; ETHANOL;
D O I
10.3390/en12122287
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
The effect of biofuel blends on the engine performance and emissions of agricultural machines can be extremely complex to predict even if the properties and the effects of the pure substances in the blends can be sourced from the literature. Indeed, on the one hand, internal combustion engines (ICEs) have a high intrinsic operational complexity; on the other hand, biofuels show antithetic effects on engine performance and present positive or negative interactions that are difficult to determine a priori. This study applies the Response Surface Methodology (RSM), a numerical method typically applied in other disciplines (e.g., industrial engineering) and for other purposes (e.g., set-up of production machines), to analyse a large set of experimental data regarding the mechanical and environmental performances of an ICE used to power a farm tractor. The aim is twofold: i) to demonstrate the effectiveness of RSM in quantitatively assessing the effects of biofuels on a complex system like an ICE; ii) to supply easy-to-use correlations for the users to predict the effect of biofuel blends on performance and emissions of tractor engines. The methodology showed good prediction capabilities and yielded interesting outcomes. The effects of biofuel blends and physical fuel parameters were adopted to study the engine performance. Among all possible parameters depending on the fuel mixture, the viscosity of a fuel blend demonstrated a high statistical significance on some system responses directly related to the engine mechanical performances. This parameter can constitute an interesting indirect estimator of the mechanical performances of an engine fuelled with such blend, while it showed poor accuracy in predicting the emissions of the ICE (NOx, CO concentration and opacity of the exhaust gases) due to a higher influence of the chemical composition of the fuel blend on these parameters; rather, the blend composition showed a much higher accuracy in the assessment of the mechanical performance of the ICE.
引用
收藏
页数:45
相关论文
共 71 条
[1]   Biofuels (alcohols and biodiesel) applications as fuels for internal combustion engines [J].
Agarwal, Avinash Kumar .
PROGRESS IN ENERGY AND COMBUSTION SCIENCE, 2007, 33 (03) :233-271
[2]  
[Anonymous], 2019, FROM SIGMA 50 DYN
[3]  
ASTM, 2018, D727918 ASTM
[4]  
ASTM, 2017, ASTM D445: standard test method for kinematic viscosity of transparent and opaque liquids (and calculation of dynamic viscosity)
[5]  
ASTM, 2017, ASTM Standard D446-12: Standard Specifications and Operating Instructions for Glass Capillary Kinematic Viscometers
[6]   Response surface methodology (RSM) based multi-objective optimization of fusel oil-gasoline blends at different water content in SI engine [J].
Awad, Omar I. ;
Mamat, R. ;
Ali, Obed M. ;
Azmi, W. H. ;
Kadirgama, K. ;
Yusri, I. M. ;
Leman, A. M. ;
Yusaf, T. .
ENERGY CONVERSION AND MANAGEMENT, 2017, 150 :222-241
[7]   Potential alternatives to edible oils for biodiesel production - A review of current work [J].
Balat, Mustafa .
ENERGY CONVERSION AND MANAGEMENT, 2011, 52 (02) :1479-1492
[8]   Response surface methodology (RSM) as a tool for optimization in analytical chemistry [J].
Bezerra, Marcos Almeida ;
Santelli, Ricardo Erthal ;
Oliveira, Eliane Padua ;
Villar, Leonardo Silveira ;
Escaleira, Luciane Amlia .
TALANTA, 2008, 76 (05) :965-977
[9]   Second Generation Biodiesel: Potential Alternative to- Edible Oil-Derived Biodiesel [J].
Bhuiya, M. M. K. ;
Rasul, M. G. ;
Khan, M. M. K. ;
Ashwath, N. ;
Azad, A. K. ;
Hazrat, M. A. .
INTERNATIONAL CONFERENCE ON APPLIED ENERGY, ICAE2014, 2014, 61 :1969-1972
[10]  
Bietresato M, 2013, T ASABE, V56, P5