ACCELERATION OF RELATIVISTIC ELECTRONS BY MAGNETOHYDRODYNAMIC TURBULENCE: IMPLICATIONS FOR NON-THERMAL EMISSION FROM BLACK HOLE ACCRETION DISKS

被引:60
作者
Lynn, Jacob W. [1 ,2 ,3 ]
Quataert, Eliot [2 ,3 ]
Chandran, Benjamin D. G. [4 ,5 ]
Parrish, Ian J. [6 ]
机构
[1] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA
[2] Univ Calif Berkeley, Dept Astron, Berkeley, CA 94720 USA
[3] Univ Calif Berkeley, Theoret Astrophys Ctr, Berkeley, CA 94720 USA
[4] Univ New Hampshire, Ctr Space Sci, Durham, NH 03824 USA
[5] Univ New Hampshire, Dept Phys, Durham, NH 03824 USA
[6] Univ Toronto, Canadian Inst Theoret Astrophys, Toronto, ON M5S 3H8, Canada
基金
美国国家科学基金会;
关键词
acceleration of particles; accretion; accretion disks; plasmas; STRONG PLASMA TURBULENCE; ALFVENIC TURBULENCE; CHARGED-PARTICLES; MAGNETIC-FIELD; SOLAR-WIND; SIMULATIONS; DIFFUSION; PARALLEL; TRANSPORT; MODELS;
D O I
10.1088/0004-637X/791/1/71
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We use analytic estimates and numerical simulations of test particles interacting with magnetohydrodynamic (MHD) turbulence to show that subsonic MHD turbulence produces efficient second-order Fermi acceleration of relativistic particles. This acceleration is not well described by standard quasi-linear theory but is a consequence of resonance broadening of wave-particle interactions in MHD turbulence. We provide momentum diffusion coefficients that can be used for astrophysical and heliospheric applications and discuss the implications of our results for accretion flows onto black holes. In particular, we show that particle acceleration by subsonic turbulence in radiatively inefficient accretion flows can produce a non-thermal tail in the electron distribution function that is likely important for modeling and interpreting the emission from low-luminosity systems such as Sgr A* and M87.
引用
收藏
页数:7
相关论文
共 36 条
[1]  
ACHTERBERG A, 1981, ASTRON ASTROPHYS, V97, P259
[2]   Instability, turbulence, and enhanced transport in accretion disks [J].
Balbus, SA ;
Hawley, JF .
REVIEWS OF MODERN PHYSICS, 1998, 70 (01) :1-53
[3]   PROTON AND ELECTRON MEAN FREE PATHS - THE PALMER CONSENSUS REVISITED [J].
BIEBER, JW ;
MATTHAEUS, WH ;
SMITH, CW ;
WANNER, W ;
KALLENRODE, MB ;
WIBBERENZ, G .
ASTROPHYSICAL JOURNAL, 1994, 420 (01) :294-306
[4]   PARTICLE-ACCELERATION AT ASTROPHYSICAL SHOCKS - A THEORY OF COSMIC-RAY ORIGIN [J].
BLANDFORD, R ;
EICHLER, D .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1987, 154 (01) :1-75
[5]  
Boris JP, 1970, P 4 C NUM SIM PLASM, P3
[6]   Scattering of energetic particles by anisotropic magnetohydrodynamic turbulence with a Goldreich-Sridhar power spectrum [J].
Chandran, BDG .
PHYSICAL REVIEW LETTERS, 2000, 85 (22) :4656-4659
[7]   Weak compressible magnetohydrodynamic turbulence in the solar corona [J].
Chandran, BDG .
PHYSICAL REVIEW LETTERS, 2005, 95 (26)
[8]   PERPENDICULAR ION HEATING BY LOW-FREQUENCY ALFVEN-WAVE TURBULENCE IN THE SOLAR WIND [J].
Chandran, Benjamin D. G. ;
Li, Bo ;
Rogers, Barrett N. ;
Quataert, Eliot ;
Germaschewski, Kai .
ASTROPHYSICAL JOURNAL, 2010, 720 (01) :503-515
[9]   Simulations of magnetohydrodynamic turbulence in a strongly magnetized medium [J].
Cho, J ;
Lazarian, A ;
Vishniac, ET .
ASTROPHYSICAL JOURNAL, 2002, 564 (01) :291-301
[10]   Compressible magnetohydrodynamic turbulence: mode coupling, scaling relations, anisotropy, viscosity-damped regime and astrophysical implications [J].
Cho, JY ;
Lazarian, A .
MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2003, 345 (01) :325-339