Structural investigation and compression of a co-crystal of indomethacin and saccharin

被引:7
作者
Connor, Lauren E. [1 ,2 ,3 ]
Vassileiou, Antony D. [5 ]
Halbert, Gavin W. [1 ,4 ]
Johnston, Blair F. [1 ,4 ,5 ,6 ]
Oswald, Iain D. H. [1 ]
机构
[1] Univ Strathclyde, Strathclyde Inst Pharm & Biomed Sci, 161 Cathedral St, Glasgow G4 0RE, Lanark, Scotland
[2] Univ Strathclyde, Collaborat Int Res Programme, Technol Innovat Ctr, 99 George St, Glasgow G1 1RD, Lanark, Scotland
[3] Nanyang Technol Univ, Collaborat Int Res Programme, Singapore, Singapore
[4] Univ Strathclyde, EPSRC Ctr Innovat Mfg Continuous Mfg & Crystallis, Technol Innovat Ctr, 99 George St, Glasgow G1 1RD, Lanark, Scotland
[5] Univ Strathclyde, EPSRC ARTICULAR, Technol Innovat Ctr, 99 George St, Glasgow G1 1RD, Lanark, Scotland
[6] Natl Phys Lab, Hampton Rd, Teddington TW11 0LW, Middx, England
基金
英国工程与自然科学研究理事会;
关键词
INTERMOLECULAR INTERACTION ENERGIES; HIGH-PRESSURE; POLYMORPHIC TRANSFORMATION; X-RAY; COCRYSTAL; EXPLORATION; DISPERSION; RADIATION; AMBIENT; ALANINE;
D O I
10.1039/c9ce00838a
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The co-crystalline structure of the non-steroidal, anti-inflammatory indomethacin with the non-toxic, generally regarded as safe (GRAS) sweetener component saccharin was investigated up to 6.33 GPa using a diamond anvil cell (DAC). Single crystal X-ray diffraction measurements show that the co-crystal remains in the same triclinic, P1, phase throughout the compression with a significant reduction in void space (155.69 to 55.61 angstrom(3)). Information on the response of different types of intermolecular interactions to external force at the same time is enabled by the use of a co-crystal. We have rationalised that the length and compression rate of the saccharin amide dimer in the co-crystal is caused by the dimer sitting in a 'pocket' surrounded by the indomethacin framework. This framework reduces the effects of molecular packing on the dimer allowing for an ideal hydrogen bonding geometry.
引用
收藏
页码:4465 / 4472
页数:8
相关论文
共 66 条
[1]   Crystal engineering of the composition of pharmaceutical phases.: Do pharmaceutical co-crystals represent a new path to improved medicines? [J].
Almarsson, Ö ;
Zaworotko, MJ .
CHEMICAL COMMUNICATIONS, 2004, (17) :1889-1896
[2]  
[Anonymous], 2004, SHADE
[3]  
[Anonymous], 2013, APEX 2
[4]   Microstructural imaging of early gel layer formation in HPMC matrices [J].
Bajwa, Gurjit S. ;
Hoebler, Katrin ;
Sammon, Chris ;
Timmins, Peter ;
Melia, Colin D. .
JOURNAL OF PHARMACEUTICAL SCIENCES, 2006, 95 (10) :2145-2157
[5]   Indomethacin-saccharin cocrystal:: Design, synthesis and preliminary pharmaceutical characterization [J].
Basavoju, Srinivas ;
Bostrom, Dan ;
Velaga, Sitaram P. .
PHARMACEUTICAL RESEARCH, 2008, 25 (03) :530-541
[6]   PATTERNS IN HYDROGEN BONDING - FUNCTIONALITY AND GRAPH SET ANALYSIS IN CRYSTALS [J].
BERNSTEIN, J ;
DAVIS, RE ;
SHIMONI, L ;
CHANG, NL .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 1995, 34 (15) :1555-1573
[7]   Multicomponent organic crystals at high pressure [J].
Boldyreva, Elena V. .
ZEITSCHRIFT FUR KRISTALLOGRAPHIE-CRYSTALLINE MATERIALS, 2014, 229 (03) :236-245
[8]  
Boldyreva EV, 2002, J THERM ANAL CALORIM, V68, P437
[9]   Organic cocrystals: the development of ferroelectric properties [J].
Bolla, Geetha ;
Dong, Huanli ;
Zhen, Yonggang ;
Wang, Zhaohui ;
Hu, Wenping .
SCIENCE CHINA-MATERIALS, 2016, 59 (07) :523-530
[10]   ζ-Glycine: insight into the mechanism of a polymorphic phase transition [J].
Bull, Craig L. ;
Flowitt-Hill, Giles ;
de Gironcoli, Stefano ;
Kucukbenli, Emine ;
Parsons, Simon ;
Cong Huy Pham ;
Playford, Helen Y. ;
Tucker, Matthew G. .
IUCRJ, 2017, 4 :569-574