MARTINGALE REPRESENTATION AND A SIMPLE PROOF OF LOGARITHMIC SOBOLEV INEQUALITIES ON PATH SPACES

被引:69
作者
Capitaine, Mireille [1 ]
Hsu, Elton P. [2 ]
Ledoux, Michel [1 ]
机构
[1] Univ Paul Sabatier, CNRS, Dept Math, Lab Stat & Probabilites Associe, F-31062 Toulouse, France
[2] Northwestern Univ, Dept Math, Evanston, IL 60208 USA
关键词
Martingale Representation; Logarithmic Sobolev Inequality; Hyper-contractivity; Path Space;
D O I
10.1214/ECP.v2-986
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We show how the Clark-Ocone-Haussmann formula for Brownian motion on a compact Riemannian manifold put forward by S. Fang in his proof of the spectral gap inequality for the Ornstein-Uhlenbeck operator on the path space can yield in a very simple way the logarithmic Sobolev inequality on the same space. By an appropriate integration by parts formula the proof also yields in the same way a logarithmic Sobolev inequality for the path space equipped with a general diffusion measure as long as the torsion of the corresponding Riemannian connection satisfies Driver's total antisymmetry condition.
引用
收藏
页码:71 / 81
页数:11
相关论文
共 14 条
[1]  
AIDA S, 1995, CR ACAD SCI I-MATH, V321, P97
[2]  
Bakry D, 1997, NEW TRENDS IN STOCHASTIC ANALYSIS, P43
[3]   Levy-Gromov's isoperimetric inequality for an infinite dimensional diffusion generator [J].
Bakry, D ;
Ledoux, M .
INVENTIONES MATHEMATICAE, 1996, 123 (02) :259-281
[4]  
Bismut M., 1984, LARGE DEVIATIONS MAL
[6]  
Fang S., 1996, WEITZENBOCK FORMULA
[7]  
FANG SZ, 1994, CR ACAD SCI I-MATH, V318, P257
[8]   LOGARITHMIC SOBOLEV INEQUALITIES [J].
GROSS, L .
AMERICAN JOURNAL OF MATHEMATICS, 1975, 97 (04) :1061-1083
[9]  
Hsu E. P., 1996, IAS PARK CI IN PRESS, V5
[10]  
Hsu E. P., COMMUN MATH IN PRESS