Chemical kinetics of hexamethyldisiloxane pyrolysis: A ReaxFF molecular dynamics simulation study

被引:4
|
作者
Chen, Yugong [1 ]
Chen, Hao [1 ]
Wang, Jianxiang [1 ]
Huang, Yaosong [1 ]
机构
[1] Soochow Univ, Coll Energy, Suzhou 215006, Peoples R China
基金
中国国家自然科学基金;
关键词
hexamethyldisiloxane; molecular dynamics simulation; pyrolysis; reaction rate constant; ReaxFF; FUSED-SILICA GLASS; THERMAL-DECOMPOSITION;
D O I
10.1002/kin.21570
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The pyrolysis kinetics of hexamethyldisiloxane (HMDSO) at various temperatures was studied using the reactive force field (ReaxFF) molecular dynamics simulations. Reaction rate constants and the main pyrolysis pathways were explored at the initial decomposition stage of HMDSO and intermediates decomposition stage. The activation energy and pre-exponential factor describing the reaction rate constants were obtained and further validated by experimental data and DFT theoretical calculations. The formation of C5H15OSi2 fragment by Si-C bond dissociation was dominant at the initial decomposition stage of HMDSO at the simulation temperatures of 2500-4000 K. The subsequent reaction pathways involved the formation of C5H14OSi2 and C4H11OSi2. After that, the pathways were different for 2500 and 3000 K. At 4000 K, small silicon-containing fragments were formed, including CH3Si, CH4Si, and C3H9Si, etc. The simulations also revealed that the major hydrocarbons generated during HMDSO pyrolysis were CH3 and CH4. Also, CH4 formation was more important in the end of HMDSO pyrolysis when simulation temperature was over 3500 K.
引用
收藏
页码:413 / 423
页数:11
相关论文
共 50 条
  • [31] Molecular Dynamics Simulations Study of Brown Coal Pyrolysis Using ReaxFF Method
    Hong, Di-kun
    Shu, Hong-kuan
    Guo, Xin
    Zheng, Chu-guang
    CLEAN COAL TECHNOLOGY AND SUSTAINABLE DEVELOPMENT, 2016, : 59 - 67
  • [32] A ReaxFF Molecular Dynamics Study of the Pyrolysis Mechanism of Oleic-type Triglycerides
    Zhang, Ying
    Wang, Xuelei
    Li, Qingmin
    Yang, Rui
    Li, Chengrong
    ENERGY & FUELS, 2015, 29 (08) : 5056 - 5068
  • [33] Study of the pyrolysis of group components of coal combined experiments and ReaxFF molecular dynamics
    Lian, Lulu
    Qin, Zhihong
    Yang, Xiaoqin
    Lin, Zhe
    Wang, Peng
    JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY, 2024, 149 (14) : 7817 - 7828
  • [34] Pyrolysis of binary fuel mixtures at supercritical conditions: A ReaxFF molecular dynamics study
    Ashraf, Chowdhury
    Shabnam, Sharmin
    Jain, Abhishek
    Xuan, Yuan
    van Duin, Adri C. T.
    FUEL, 2019, 235 : 194 - 207
  • [35] Reactive molecular dynamics of pyrolysis and combustion of alternative jet fuels: A ReaxFF study
    Goncalves, Rene F. B.
    Iha, Bruno K. V.
    Rocco, Jose A. F. F.
    Kuznetsov, Aleksey E.
    FUEL, 2022, 310
  • [36] High-Temperature Pyrolysis of N-Tetracosane Based on ReaxFF Molecular Dynamics Simulation
    Yu, Xiaowen
    Zhang, Chunhua
    Wang, Hanwen
    Li, Yangyang
    Kang, Yujia
    Yang, Ke
    ACS OMEGA, 2023, 8 (23): : 20823 - 20833
  • [37] Pyrolysis and oxidation mechanisms of ethylene and ethanol blended fuel based on ReaxFF molecular dynamics simulation
    Song, Liang
    Xu, Chun-Chen
    Ye, Jing
    Zhang, Yong
    Chen, Biao
    Hou, Fang-Chao
    Chen, Bo-Cong
    Su, Hao-Long
    Sun, Jing
    FUEL, 2024, 373
  • [38] Reactive molecular dynamics simulation and chemical kinetic modeling of pyrolysis and combustion of n-dodecane
    Wang, Quan-De
    Wang, Jing-Bo
    Li, Juan-Qin
    Tan, Ning-Xin
    Li, Xiang-Yuan
    COMBUSTION AND FLAME, 2011, 158 (02) : 217 - 226
  • [39] Molecular Dynamics Simulation of the Pyrolysis and Oxidation of NEPE Propellant
    Wen, Zhengcheng
    Zhao, Xiang
    Li, Heping
    Huang, Xuefeng
    Wang, Fang
    Li, Wei
    Tang, Gen
    Feng, Muye
    PROPELLANTS EXPLOSIVES PYROTECHNICS, 2022, 47 (12)
  • [40] Study on pyrolysis characteristics of Ningxia high rank bituminous coal composite macerals based on ReaxFF molecular dynamics simulation
    Wang Q.
    Wang R.
    Zhang J.
    Li H.
    Bai H.
    Meitan Xuebao/Journal of the China Coal Society, 2021, 46 : 1011 - 1019