Chemical kinetics of hexamethyldisiloxane pyrolysis: A ReaxFF molecular dynamics simulation study

被引:4
|
作者
Chen, Yugong [1 ]
Chen, Hao [1 ]
Wang, Jianxiang [1 ]
Huang, Yaosong [1 ]
机构
[1] Soochow Univ, Coll Energy, Suzhou 215006, Peoples R China
基金
中国国家自然科学基金;
关键词
hexamethyldisiloxane; molecular dynamics simulation; pyrolysis; reaction rate constant; ReaxFF; FUSED-SILICA GLASS; THERMAL-DECOMPOSITION;
D O I
10.1002/kin.21570
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The pyrolysis kinetics of hexamethyldisiloxane (HMDSO) at various temperatures was studied using the reactive force field (ReaxFF) molecular dynamics simulations. Reaction rate constants and the main pyrolysis pathways were explored at the initial decomposition stage of HMDSO and intermediates decomposition stage. The activation energy and pre-exponential factor describing the reaction rate constants were obtained and further validated by experimental data and DFT theoretical calculations. The formation of C5H15OSi2 fragment by Si-C bond dissociation was dominant at the initial decomposition stage of HMDSO at the simulation temperatures of 2500-4000 K. The subsequent reaction pathways involved the formation of C5H14OSi2 and C4H11OSi2. After that, the pathways were different for 2500 and 3000 K. At 4000 K, small silicon-containing fragments were formed, including CH3Si, CH4Si, and C3H9Si, etc. The simulations also revealed that the major hydrocarbons generated during HMDSO pyrolysis were CH3 and CH4. Also, CH4 formation was more important in the end of HMDSO pyrolysis when simulation temperature was over 3500 K.
引用
收藏
页码:413 / 423
页数:11
相关论文
共 50 条
  • [21] A ReaxFF-based molecular dynamics study of the pyrolysis mechanism of HFO-1336mzz(Z)
    Huo, Erguang
    Liu, Chao
    Xu, Xiaoxiao
    Dang, Chaobin
    INTERNATIONAL JOURNAL OF REFRIGERATION-REVUE INTERNATIONALE DU FROID, 2017, 83 : 118 - 130
  • [22] Atomistic insights into the pyrolysis of methyl ethyl ketone peroxide via ReaxFF molecular dynamics simulation
    Zhang, Xin
    Pan, Yong
    Ni, Yuqing
    Shi, Xianghui
    Jiang, Juncheng
    PROCESS SAFETY AND ENVIRONMENTAL PROTECTION, 2022, 161 : 316 - 324
  • [23] A study on the abnormal thermal behaviors of barkinite by ReaxFF molecular dynamics simulation
    Wang, Shaoqing
    Wang, Xiaoling
    Zhao, Yungang
    Lin, Yuhan
    JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY, 2023, 148 (22) : 12421 - 12432
  • [24] ReaxFF-based molecular dynamics simulation of the initial pyrolysis mechanism of lignite
    Xu, Fang
    Liu, Hui
    Wang, Qing
    Pan, Shuo
    Zhao, Deng
    Liu, Qi
    Liu, Ying
    FUEL PROCESSING TECHNOLOGY, 2019, 195
  • [25] ReaxFF molecular dynamics study on pyrolysis of bicyclic compounds for aviation fuel
    Lele, Aditya
    Kwon, Hyunguk
    Ganeshan, Karthik
    Xuan, Yuan
    van Duin, Adri C. T.
    FUEL, 2021, 297
  • [26] Influence of water on HFO-1234yf oxidation pyrolysis via ReaxFF molecular dynamics simulation
    Cao, Yu
    Liu, Chao
    Xu, Xiaoxiao
    Huo, Erguang
    Pu, Yu
    MOLECULAR PHYSICS, 2019, 117 (13) : 1768 - 1780
  • [27] Characterisation of pyrolysis kinetics and detailed gas species formations of engineering polymers via reactive molecular dynamics (ReaxFF)
    Chen, T. B. Y.
    Yuen, A. C. Y.
    Lin, B.
    Liu, L.
    Lo, A. L. P.
    Chan, Q. N.
    Zhang, J.
    Cheung, S. C. P.
    Yeoh, G. H.
    JOURNAL OF ANALYTICAL AND APPLIED PYROLYSIS, 2021, 153
  • [28] Reaction Mechanism of Transformer Oil Pyrolysis Based on ReaxFF Molecular Simulation
    Du, Lin
    Wang, Wujing
    Chen, Weigen
    Wei, Chao
    2016 IEEE INTERNATIONAL CONFERENCE ON HIGH VOLTAGE ENGINEERING AND APPLICATION (ICHVE), 2016,
  • [29] ReaxFF molecular dynamics simulations of the initial pyrolysis mechanism of unsaturated triglyceride
    Zhang, Zhiqiang
    Yan, Kefeng
    Zhang, Jilong
    JOURNAL OF MOLECULAR MODELING, 2014, 20 (03)
  • [30] Pyrolysis behaviors of di-tert-butyl peroxide in gas and liquid phases: A ReaxFF molecular dynamics simulation
    Shi, Xianghui
    Pan, Yong
    Gong, Ziyi
    Zhang, Xin
    Zhu, Huanting
    FUEL, 2023, 351