Characterizing quantum supremacy in near-term devices

被引:711
作者
Boixo, Sergio [1 ]
Isakov, Sergei, V [2 ]
Smelyanskiy, Vadim N. [1 ]
Babbush, Ryan [1 ]
Ding, Nan [1 ]
Jiang, Zhang [3 ,4 ]
Bremner, Michael J. [5 ]
Martinis, John M. [6 ,7 ]
Neven, Hartmut [1 ]
机构
[1] Google Inc, Venice, CA 90291 USA
[2] Google Inc, Zurich, Switzerland
[3] NASA, Ames Res Ctr, QuAIL, Moffett Field, CA 94035 USA
[4] SGT Inc, Greenbelt, MD USA
[5] Univ Technol Sydney, Fac Engn & Informat Technol, Ctr Quantum Software & Informat, Ctr Quantum Computat & Commun Technol, Ultimo, NSW, Australia
[6] Google Inc, Santa Barbara, CA USA
[7] Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA
基金
澳大利亚研究理事会;
关键词
UNITARY OPERATORS; HYPERSENSITIVITY; COMPUTATIONS; COMPLEXITY; CIRCUITS;
D O I
10.1038/s41567-018-0124-x
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A critical question for quantum computing in the near future is whether quantum devices without error correction can perform a well-defined computational task beyond the capabilities of supercomputers. Such a demonstration of what is referred to as quantum supremacy requires a reliable evaluation of the resources required to solve tasks with classical approaches. Here, we propose the task of sampling from the output distribution of random quantum circuits as a demonstration of quantum supremacy. We extend previous results in computational complexity to argue that this sampling task must take exponential time in a classical computer. We introduce cross-entropy benchmarking to obtain the experimental fidelity of complex multiqubit dynamics. This can be estimated and extrapolated to give a success metric for a quantum supremacy demonstration. We study the computational cost of relevant classical algorithms and conclude that quantum supremacy can be achieved with circuits in a two-dimensional lattice of 7 x 7 qubits and around 40 clock cycles. This requires an error rate of around 0.5% for two-qubit gates (0.05% for one-qubit gates), and it would demonstrate the basic building blocks for a fault-tolerant quantum computer.
引用
收藏
页码:595 / 600
页数:6
相关论文
共 42 条
  • [1] Quantum computing, postselection, and probabilistic polynomial-time
    Aaronson, S
    [J]. PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2005, 461 (2063): : 3473 - 3482
  • [2] Aaronson S, 2011, ACM S THEORY COMPUT, P333
  • [3] Aaronson Scott., 2017, Proceedings of the 32nd IEEE Conference on Computational Complexity (CCC), P22
  • [4] [Anonymous], 2004, RANDOM MATRICES
  • [5] Efficiency of producing random unitary matrices with quantum circuits
    Arnaud, Ludovic
    Braun, Daniel
    [J]. PHYSICAL REVIEW A, 2008, 78 (06):
  • [6] Digital quantum simulation of fermionic models with a superconducting circuit
    Barends, R.
    Lamata, L.
    Kelly, J.
    Garcia-Alvarez, L.
    Fowler, A. G.
    Megrant, A.
    Jeffrey, E.
    White, T. C.
    Sank, D.
    Mutus, J. Y.
    Campbell, B.
    Chen, Yu
    Chen, Z.
    Chiaro, B.
    Dunsworth, A.
    Hoi, I. -C.
    Neill, C.
    O'Malley, P. J. J.
    Quintana, C.
    Roushan, P.
    Vainsencher, A.
    Wenner, J.
    Solano, E.
    Martinis, John M.
    [J]. NATURE COMMUNICATIONS, 2015, 6
  • [7] Superconducting quantum circuits at the surface code threshold for fault tolerance
    Barends, R.
    Kelly, J.
    Megrant, A.
    Veitia, A.
    Sank, D.
    Jeffrey, E.
    White, T. C.
    Mutus, J.
    Fowler, A. G.
    Campbell, B.
    Chen, Y.
    Chen, Z.
    Chiaro, B.
    Dunsworth, A.
    Neill, C.
    O'Malley, P.
    Roushan, P.
    Vainsencher, A.
    Wenner, J.
    Korotkov, A. N.
    Cleland, A. N.
    Martinis, John M.
    [J]. NATURE, 2014, 508 (7497) : 500 - 503
  • [8] Random-matrix theory of quantum transport
    Beenakker, CWJ
    [J]. REVIEWS OF MODERN PHYSICS, 1997, 69 (03) : 731 - 808
  • [9] Operational interpretation for global multipartite entanglement
    Boixo, S.
    Monras, A.
    [J]. PHYSICAL REVIEW LETTERS, 2008, 100 (10)
  • [10] Boixo S, 2017, PREPRINT