Characterizing quantum supremacy in near-term devices

被引:780
作者
Boixo, Sergio [1 ]
Isakov, Sergei, V [2 ]
Smelyanskiy, Vadim N. [1 ]
Babbush, Ryan [1 ]
Ding, Nan [1 ]
Jiang, Zhang [3 ,4 ]
Bremner, Michael J. [5 ]
Martinis, John M. [6 ,7 ]
Neven, Hartmut [1 ]
机构
[1] Google Inc, Venice, CA 90291 USA
[2] Google Inc, Zurich, Switzerland
[3] NASA, Ames Res Ctr, QuAIL, Moffett Field, CA 94035 USA
[4] SGT Inc, Greenbelt, MD USA
[5] Univ Technol Sydney, Fac Engn & Informat Technol, Ctr Quantum Software & Informat, Ctr Quantum Computat & Commun Technol, Ultimo, NSW, Australia
[6] Google Inc, Santa Barbara, CA USA
[7] Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA
基金
澳大利亚研究理事会;
关键词
UNITARY OPERATORS; HYPERSENSITIVITY; COMPUTATIONS; COMPLEXITY; CIRCUITS;
D O I
10.1038/s41567-018-0124-x
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A critical question for quantum computing in the near future is whether quantum devices without error correction can perform a well-defined computational task beyond the capabilities of supercomputers. Such a demonstration of what is referred to as quantum supremacy requires a reliable evaluation of the resources required to solve tasks with classical approaches. Here, we propose the task of sampling from the output distribution of random quantum circuits as a demonstration of quantum supremacy. We extend previous results in computational complexity to argue that this sampling task must take exponential time in a classical computer. We introduce cross-entropy benchmarking to obtain the experimental fidelity of complex multiqubit dynamics. This can be estimated and extrapolated to give a success metric for a quantum supremacy demonstration. We study the computational cost of relevant classical algorithms and conclude that quantum supremacy can be achieved with circuits in a two-dimensional lattice of 7 x 7 qubits and around 40 clock cycles. This requires an error rate of around 0.5% for two-qubit gates (0.05% for one-qubit gates), and it would demonstrate the basic building blocks for a fault-tolerant quantum computer.
引用
收藏
页码:595 / 600
页数:6
相关论文
共 42 条
[1]   Quantum computing, postselection, and probabilistic polynomial-time [J].
Aaronson, S .
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2005, 461 (2063) :3473-3482
[2]  
Aaronson S, 2011, ACM S THEORY COMPUT, P333
[3]  
Aaronson Scott., 2017, Proceedings of the 32nd IEEE Conference on Computational Complexity (CCC), P22
[4]  
[Anonymous], 2004, RANDOM MATRICES
[5]   Efficiency of producing random unitary matrices with quantum circuits [J].
Arnaud, Ludovic ;
Braun, Daniel .
PHYSICAL REVIEW A, 2008, 78 (06)
[6]   Digital quantum simulation of fermionic models with a superconducting circuit [J].
Barends, R. ;
Lamata, L. ;
Kelly, J. ;
Garcia-Alvarez, L. ;
Fowler, A. G. ;
Megrant, A. ;
Jeffrey, E. ;
White, T. C. ;
Sank, D. ;
Mutus, J. Y. ;
Campbell, B. ;
Chen, Yu ;
Chen, Z. ;
Chiaro, B. ;
Dunsworth, A. ;
Hoi, I. -C. ;
Neill, C. ;
O'Malley, P. J. J. ;
Quintana, C. ;
Roushan, P. ;
Vainsencher, A. ;
Wenner, J. ;
Solano, E. ;
Martinis, John M. .
NATURE COMMUNICATIONS, 2015, 6
[7]   Superconducting quantum circuits at the surface code threshold for fault tolerance [J].
Barends, R. ;
Kelly, J. ;
Megrant, A. ;
Veitia, A. ;
Sank, D. ;
Jeffrey, E. ;
White, T. C. ;
Mutus, J. ;
Fowler, A. G. ;
Campbell, B. ;
Chen, Y. ;
Chen, Z. ;
Chiaro, B. ;
Dunsworth, A. ;
Neill, C. ;
O'Malley, P. ;
Roushan, P. ;
Vainsencher, A. ;
Wenner, J. ;
Korotkov, A. N. ;
Cleland, A. N. ;
Martinis, John M. .
NATURE, 2014, 508 (7497) :500-503
[8]   Random-matrix theory of quantum transport [J].
Beenakker, CWJ .
REVIEWS OF MODERN PHYSICS, 1997, 69 (03) :731-808
[9]   Operational interpretation for global multipartite entanglement [J].
Boixo, S. ;
Monras, A. .
PHYSICAL REVIEW LETTERS, 2008, 100 (10)
[10]  
Boixo S, 2017, PREPRINT