Motor Imagery Hand Movement Direction Decoding Using Brain Computer Interface to Aid Stroke Recovery and Rehabilitation

被引:56
|
作者
Benzy, V. K. [1 ]
Vinod, A. P. [1 ]
Subasree, R. [2 ]
Alladi, Suvarna [2 ]
Raghavendra, K. [2 ]
机构
[1] IIT Palakkad, Elect Engn Dept, Palakkad 678623, India
[2] Natl Inst Mental Hlth & Neurosci, Bangalore 560029, Karnataka, India
关键词
Electroencephalogram; motor imagery; phase locking value; event-related desynchronization; synchronization; brain-computer interface; neurorehabilitation; EEG;
D O I
10.1109/TNSRE.2020.3039331
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Motor Imagery (MI)-based Brain Computer Interface (BCI) system is a potential technology for active neurorehabilitation of stroke patients by complementing the conventional passive rehabilitation methods. Research to date mainly focused on classifying left vs. right hand/foot MI of stroke patients. Though a very few studies have reported decoding imagined hand movement directions using electroencephalogram (EEG)-based BCI, the experiments were conducted on healthy subjects. Our work analyzes MI-based brain cortical activity from EEG signals and decodes the imagined hand movement directions in stroke patients. The decoded direction (left vs. right) of hand movement imagination is used to provide control commands to a motorized arm support on which patient's affected (paralyzed) arm is placed. This enables the patient to move his/her stroke-affected hand towards the intended (imagined) direction that aids neuroplasticity in the brain. The synchronization measure called Phase Locking Value (PLV), extracted from EEG, is the neuronal signature used to decode the directional movement of the MI task. Event-related desynchronization/synchronization (ERD/ERS) analysis on Mu and Beta frequency bands of EEG is done to select the time bin corresponding to the MI task. The dissimilarities between the two directions of MI tasks are identified by selecting the most significant channel pairs that provided maximum difference in PLV features. The training protocol has an initial calibration session followed by a feedback session with 50 trials of MI task in each session. The feedback session extracts PLV features corresponding to most significant channel pairs which are identified in the calibration session and is used to predict the direction of MI task in left/right direction. An average MI direction classification accuracy of 74.44% is obtained in performing the training protocol and 68.63% from the prediction protocol during feedback session on 16 stroke patients.
引用
收藏
页码:3051 / 3062
页数:12
相关论文
共 50 条
  • [41] Evaluation of Motor Imagery Using Combined Cue Based EEG-Brain Computer Interface
    Choi, D. H.
    Lee, Y. B.
    Jeong, W. J.
    Lee, S. J.
    Kang, D. H.
    Lee, M. H.
    5TH KUALA LUMPUR INTERNATIONAL CONFERENCE ON BIOMEDICAL ENGINEERING 2011 (BIOMED 2011), 2011, 35 : 516 - 518
  • [42] REHABILITATION OF PATIENTS WITH CEREBRAL PALSY USING HAND EXOSKELETON CONTROLLED BY BRAIN-COMPUTER INTERFACE
    Bobrov, P. D.
    Diryukova, L., V
    Polyaev, B. A.
    Lajsheva, O. A.
    Usachjova, E. L.
    Sokolova, A., V
    Mihailova, D., I
    Dement'eve, K. N.
    Fedolova, I. R.
    BULLETIN OF RUSSIAN STATE MEDICAL UNIVERSITY, 2020, (04): : 33 - 40
  • [43] Brain-Computer Interface-Based Soft Robotic Glove Rehabilitation for Stroke
    Cheng, Nicholas
    Phua, Kok Soon
    Lai, Hwa Sen
    Tam, Pui Kit
    Tang, Ka Yin
    Cheng, Kai Kei
    Yeow, Raye Chen-Hua
    Ang, Kai Keng
    Guan, Cuntai
    Lim, Jeong Hoon
    IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2020, 67 (12) : 3339 - 3351
  • [44] Multi-class motor imagery EEG decoding for brain-computer interfaces
    Wang, Deng
    Miao, Duoqian
    Blohm, Gunnar
    FRONTIERS IN NEUROSCIENCE, 2012, 6
  • [45] Classifications of Motor Imagery Tasks in Brain Computer Interface Using Euclidean Distance
    Fira, Monica
    Aldea, Roxana
    Lazar, Anca
    Goras, Liviu
    2014 12TH SYMPOSIUM ON NEURAL NETWORK APPLICATIONS IN ELECTRICAL ENGINEERING (NEUREL), 2014, : 121 - 124
  • [46] Decoding electroencephalographic signals for direction in brain-computer interface using echo state network and Gaussian readouts
    Kim, Hoon-Hee
    Jeong, Jaeseung
    COMPUTERS IN BIOLOGY AND MEDICINE, 2019, 110 : 254 - 264
  • [47] Integrating EEG and MEG Signals to Improve Motor Imagery Classification in Brain-Computer Interface
    Corsi, Marie-Constance
    Chavez, Mario
    Schwartz, Denis
    Hugueville, Laurent
    Khambhati, Ankit N.
    Bassett, Danielle S.
    Fallani, Fabrizio De Vico
    INTERNATIONAL JOURNAL OF NEURAL SYSTEMS, 2019, 29 (01)
  • [48] A Wearable Channel Selection-Based Brain-Computer Interface for Motor Imagery Detection
    Lo, Chi-Chun
    Chien, Tsung-Yi
    Chen, Yu-Chun
    Tsai, Shang-Ho
    Fang, Wai-Chi
    Lin, Bor-Shyh
    SENSORS, 2016, 16 (02):
  • [49] Using a motor imagery questionnaire to estimate the performance of a Brain-Computer Interface based on object oriented motor imagery
    Vuckovic, Aleksandra
    Osuagwu, Bethel A.
    CLINICAL NEUROPHYSIOLOGY, 2013, 124 (08) : 1586 - 1595
  • [50] BRAIN-COMPUTER-INTERFACE - SUPPORTED MOTOR IMAGERY TRAININTG FOR PATIENTS WITH HEMIPARESIS
    Mokienko, O. A.
    Bobrov, P. D.
    Chernikova, L. A.
    Frolov, A. A.
    BYULLETEN SIBIRSKOY MEDITSINY, 2013, 12 (02): : 30 - +