Motor Imagery Hand Movement Direction Decoding Using Brain Computer Interface to Aid Stroke Recovery and Rehabilitation

被引:56
|
作者
Benzy, V. K. [1 ]
Vinod, A. P. [1 ]
Subasree, R. [2 ]
Alladi, Suvarna [2 ]
Raghavendra, K. [2 ]
机构
[1] IIT Palakkad, Elect Engn Dept, Palakkad 678623, India
[2] Natl Inst Mental Hlth & Neurosci, Bangalore 560029, Karnataka, India
关键词
Electroencephalogram; motor imagery; phase locking value; event-related desynchronization; synchronization; brain-computer interface; neurorehabilitation; EEG;
D O I
10.1109/TNSRE.2020.3039331
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Motor Imagery (MI)-based Brain Computer Interface (BCI) system is a potential technology for active neurorehabilitation of stroke patients by complementing the conventional passive rehabilitation methods. Research to date mainly focused on classifying left vs. right hand/foot MI of stroke patients. Though a very few studies have reported decoding imagined hand movement directions using electroencephalogram (EEG)-based BCI, the experiments were conducted on healthy subjects. Our work analyzes MI-based brain cortical activity from EEG signals and decodes the imagined hand movement directions in stroke patients. The decoded direction (left vs. right) of hand movement imagination is used to provide control commands to a motorized arm support on which patient's affected (paralyzed) arm is placed. This enables the patient to move his/her stroke-affected hand towards the intended (imagined) direction that aids neuroplasticity in the brain. The synchronization measure called Phase Locking Value (PLV), extracted from EEG, is the neuronal signature used to decode the directional movement of the MI task. Event-related desynchronization/synchronization (ERD/ERS) analysis on Mu and Beta frequency bands of EEG is done to select the time bin corresponding to the MI task. The dissimilarities between the two directions of MI tasks are identified by selecting the most significant channel pairs that provided maximum difference in PLV features. The training protocol has an initial calibration session followed by a feedback session with 50 trials of MI task in each session. The feedback session extracts PLV features corresponding to most significant channel pairs which are identified in the calibration session and is used to predict the direction of MI task in left/right direction. An average MI direction classification accuracy of 74.44% is obtained in performing the training protocol and 68.63% from the prediction protocol during feedback session on 16 stroke patients.
引用
收藏
页码:3051 / 3062
页数:12
相关论文
共 50 条
  • [21] Classification of Motor Imagery Hand Movement Directions from EEG extracted Phase Locking Value features for Brain Computer Interfaces
    Benzy, V. K.
    Vinod, A. P.
    PROCEEDINGS OF THE 2019 IEEE REGION 10 CONFERENCE (TENCON 2019): TECHNOLOGY, KNOWLEDGE, AND SOCIETY, 2019, : 2315 - 2319
  • [22] Design of Wearable Brain Computer Interface Based on Motor Imagery
    Lin, Chuan-Lung
    Chu, Tso-Yao
    Wu, Pei-Jung
    Wang, Chen-An
    Lin, Bor-Shyh
    2014 TENTH INTERNATIONAL CONFERENCE ON INTELLIGENT INFORMATION HIDING AND MULTIMEDIA SIGNAL PROCESSING (IIH-MSP 2014), 2014, : 33 - 36
  • [23] EEG datasets for motor imagery brain-computer interface
    Cho, Hohyun
    Ahn, Minkyu
    Ahn, Sangtae
    Kwon, Moonyoung
    Jun, Sung Chan
    GIGASCIENCE, 2017, 6 (07): : 1 - 8
  • [24] BRAIN COMPUTER INTERFACE USING MOTOR IMAGERY AND FACIAL EXPRESSIONS TO CONTROL A MOBILE ROBOT
    Kuffuor, James
    Samanta, Biswanath
    PROCEEDINGS OF THE ASME 11TH ANNUAL DYNAMIC SYSTEMS AND CONTROL CONFERENCE, 2018, VOL 1, 2018,
  • [25] Brain Computer Interface Using Motor Imagery And Facial Expressions To Control A Mobile Robot
    Kuffuor, James
    Samanta, Biswanath
    IEEE SOUTHEASTCON 2018, 2018,
  • [26] Robot Navigation Using a Brain Computer Interface Based on Motor Imagery
    Aljal, Majid
    Djemal, Ridha
    Ibrahim, Sutrisno
    JOURNAL OF MEDICAL AND BIOLOGICAL ENGINEERING, 2019, 39 (04) : 508 - 522
  • [27] Brain-computer interface in stroke rehabilitation
    Ang, Kai Keng
    Guan, Cuntai
    Journal of Computing Science and Engineering, 2013, 7 (02) : 139 - 146
  • [28] Controlling an Anatomical Robot Hand Using the Brain-Computer Interface Based on Motor Imagery
    Herath, H. M. K. K. M. B.
    de Mel, W. R.
    ADVANCES IN HUMAN-COMPUTER INTERACTION, 2021, 2021
  • [29] Recovery of the motor function of the arm with the aid of a hand exoskeleton controlled by a brain–computer interface in a patient with an extensive brain lesion
    Biryukova E.V.
    Pavlova O.G.
    Kurganskaya M.E.
    Bobrov P.D.
    Turbina L.G.
    Frolov A.A.
    Davydov V.I.
    Silchenko A.V.
    Mokienko O.A.
    Human Physiology, 2016, 42 (1) : 13 - 23
  • [30] Motor rehabilitation for hemiparetic stroke patients using a brain-computer interface method
    Cho, Woosang
    Heilinger, Alexander
    Ortner, Rupert
    Murovec, Nensi
    Xu, Ren
    Swift, James
    Zehetner, Manuela
    Schobesberger, Stefan
    Edlinger, Guenter
    Guger, Christoph
    2018 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN, AND CYBERNETICS (SMC), 2018, : 1001 - 1005