Motor Imagery Hand Movement Direction Decoding Using Brain Computer Interface to Aid Stroke Recovery and Rehabilitation

被引:65
作者
Benzy, V. K. [1 ]
Vinod, A. P. [1 ]
Subasree, R. [2 ]
Alladi, Suvarna [2 ]
Raghavendra, K. [2 ]
机构
[1] IIT Palakkad, Elect Engn Dept, Palakkad 678623, India
[2] Natl Inst Mental Hlth & Neurosci, Bangalore 560029, Karnataka, India
关键词
Electroencephalogram; motor imagery; phase locking value; event-related desynchronization; synchronization; brain-computer interface; neurorehabilitation; EEG;
D O I
10.1109/TNSRE.2020.3039331
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Motor Imagery (MI)-based Brain Computer Interface (BCI) system is a potential technology for active neurorehabilitation of stroke patients by complementing the conventional passive rehabilitation methods. Research to date mainly focused on classifying left vs. right hand/foot MI of stroke patients. Though a very few studies have reported decoding imagined hand movement directions using electroencephalogram (EEG)-based BCI, the experiments were conducted on healthy subjects. Our work analyzes MI-based brain cortical activity from EEG signals and decodes the imagined hand movement directions in stroke patients. The decoded direction (left vs. right) of hand movement imagination is used to provide control commands to a motorized arm support on which patient's affected (paralyzed) arm is placed. This enables the patient to move his/her stroke-affected hand towards the intended (imagined) direction that aids neuroplasticity in the brain. The synchronization measure called Phase Locking Value (PLV), extracted from EEG, is the neuronal signature used to decode the directional movement of the MI task. Event-related desynchronization/synchronization (ERD/ERS) analysis on Mu and Beta frequency bands of EEG is done to select the time bin corresponding to the MI task. The dissimilarities between the two directions of MI tasks are identified by selecting the most significant channel pairs that provided maximum difference in PLV features. The training protocol has an initial calibration session followed by a feedback session with 50 trials of MI task in each session. The feedback session extracts PLV features corresponding to most significant channel pairs which are identified in the calibration session and is used to predict the direction of MI task in left/right direction. An average MI direction classification accuracy of 74.44% is obtained in performing the training protocol and 68.63% from the prediction protocol during feedback session on 16 stroke patients.
引用
收藏
页码:3051 / 3062
页数:12
相关论文
共 59 条
[31]   Single trial prediction of self-paced reaching directions from EEG signals [J].
Lew, Eileen Y. L. ;
Chavarriaga, Ricardo ;
Silvoni, Stefano ;
Millan, Jose del R. .
FRONTIERS IN NEUROSCIENCE, 2014, 8
[32]   Decoding hand movement velocity from electroencephalogram signals during a drawing task [J].
Lv, Jun ;
Li, Yuanqing ;
Gu, Zhenghui .
BIOMEDICAL ENGINEERING ONLINE, 2010, 9
[33]   Effects of training pre-movement sensorimotor rhythms on behavioral performance [J].
McFarland, Dennis J. ;
Sarnacki, William A. ;
Wolpaw, Jonathan R. .
JOURNAL OF NEURAL ENGINEERING, 2015, 12 (06)
[34]   Efficient neuroplasticity induction in chronic stroke patients by an associative brain-computer interface [J].
Mrachacz-Kersting, Natalie ;
Jiang, Ning ;
Stevenson, Andrew James Thomas ;
Niazi, Imran Khan ;
Kostic, Vladimir ;
Pavlovic, Aleksandra ;
Radovanovic, Sasa ;
Djuric-Jovicic, Milica ;
Agosta, Federica ;
Dremstrup, Kim ;
Farina, Dario .
JOURNAL OF NEUROPHYSIOLOGY, 2016, 115 (03) :1410-1421
[35]   From classic motor imagery to complex movement intention decoding: The noninvasive Graz-BCI approach [J].
Mueller-Putz, G. R. ;
Schwarz, A. ;
Pereira, J. ;
Ofner, P. .
BRAIN-COMPUTER INTERFACES: LAB EXPERIMENTS TO REAL-WORLD APPLICATIONS, 2016, 228 :39-70
[36]   Event-related dynamics of cortical rhythms: frequency-specific features and functional correlates [J].
Neuper, C ;
Pfurtscheller, G .
INTERNATIONAL JOURNAL OF PSYCHOPHYSIOLOGY, 2001, 43 (01) :41-58
[37]   EEG-based discrimination between imagination of right and left hand movement [J].
Pfurtscheller, G ;
Neuper, C ;
Flotzinger, D ;
Pregenzer, M .
ELECTROENCEPHALOGRAPHY AND CLINICAL NEUROPHYSIOLOGY, 1997, 103 (06) :642-651
[38]   β rebound after different types of motor imagery in man [J].
Pfurtscheller, G ;
Neuper, C ;
Brunner, C ;
da Silva, FL .
NEUROSCIENCE LETTERS, 2005, 378 (03) :156-159
[39]   Brain-Computer Interface Boosts Motor Imagery Practice during Stroke Recovery [J].
Pichiorri, Floriana ;
Morone, Giovanni ;
Petti, Manuela ;
Toppi, Jlenia ;
Pisotta, Iolanda ;
Molinari, Marco ;
Paolucci, Stefano ;
Inghilleri, Maurizio ;
Astolfi, Laura ;
Cincotti, Febo ;
Mattia, Donatella .
ANNALS OF NEUROLOGY, 2015, 77 (05) :851-865
[40]   Applying a brain-computer interface to support motor imagery practice in people with stroke for upper limb recovery: a feasibility study [J].
Prasad, Girijesh ;
Herman, Pawel ;
Coyle, Damien ;
McDonough, Suzanne ;
Crosbie, Jacqueline .
JOURNAL OF NEUROENGINEERING AND REHABILITATION, 2010, 7