On an integral related to biaxially anisotropic media

被引:10
作者
Fikioris, G [1 ]
Cottis, PG [1 ]
Panagopoulos, AD [1 ]
机构
[1] Natl Tech Univ Athens, Inst Commun & Comp Syst, Dept Elect & Comp Engn, GR-15773 Zografos, Greece
关键词
Bessel functions; infinite integrals; continuity; differentiability;
D O I
10.1016/S0377-0427(02)00368-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
An integral arising in certain studies of theoretical electromagnetics is evaluated and its properties are discussed in some detail. The integral has three integer, two real, and one complex parameter. The integrand involves a product of Bessel functions of different argument and order. Several generalizations are discussed. (C) 2002 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:343 / 360
页数:18
相关论文
共 22 条
[1]  
[Anonymous], P IEEE ISSAC TOK JAP
[2]   Green's function for an unbounded biaxial medium in cylindrical coordinates [J].
Cottis, PG ;
Vazouras, CN ;
Spyrou, C .
IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 1999, 47 (01) :195-199
[3]   PROPERTIES OF THE DYADIC GREENS-FUNCTION FOR AN UNBOUNDED ANISOTROPIC MEDIUM [J].
COTTIS, PG ;
KONDYLIS, GD .
IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 1995, 43 (02) :154-161
[4]  
DIXON AL, 1930, Q J MATH, V1, P122
[5]  
DOME G, 1996, MATH COMPUT, V65, P1382
[6]  
FIKIORIS G, 1998, MATH COMPUT, V67, P1753
[7]  
Gradshteyn I.S., 1994, Tables of Integrals, Series, and Products
[8]  
Kolbig K., 1995, MATH COMPUT, V64, P449
[9]   CURRENT DISTRIBUTION AND INPUT ADMITTANCE OF AN INFINITE CYLINDRICAL ANTENNA IN ANISOTROPIC PLASMA [J].
LEE, SW ;
LO, YT .
IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 1967, AP15 (02) :244-+
[10]  
Magnus W., 1966, FORMULAS THEOREMS SP