Fourier Inversion Formulas in Option Pricing and Insurance

被引:11
作者
Dufresne, Daniel [1 ]
Garrido, Jose [2 ]
Morales, Manuel [3 ]
机构
[1] Univ Melbourne, Ctr Actuarial Studies, Melbourne, Vic 3010, Australia
[2] Concordia Univ, Dept Math & Stat, Montreal, PQ H4B 1R6, Canada
[3] Univ Montreal, Dept Math & Stat, Montreal, PQ H3C 3J7, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Fourier inversion; Option pricing; Stop-loss premiums; Risk theory;
D O I
10.1007/s11009-007-9049-z
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Several authors have used Fourier inversion to compute prices of puts and calls, some using Parseval's theorem. The expected value of max (S - K, 0) also arises in excess-of-loss or stop-loss insurance, and we show that Fourier methods may be used to compute them. In this paper, we take the idea of using Parseval's theorem further: (1) formulas requiring weaker assumptions; (2) relationship with classical inversion theorems for probability distributions; (3) formulas for payoffs which occur in insurance. Numerical examples are provided.
引用
收藏
页码:359 / 383
页数:25
相关论文
共 17 条
[1]  
Abramowitz M, 1968, Handbook of mathematical functions
[2]  
[Anonymous], 1977, The advanced theory of statistics
[3]  
Apostol TM., 1974, MATH ANAL
[4]   Spanning and derivative-security valuation [J].
Bakshi, G ;
Madan, D .
JOURNAL OF FINANCIAL ECONOMICS, 2000, 55 (02) :205-238
[5]   On a new approach to calculating expectations for option pricing [J].
Borovkov, K ;
Novikov, A .
JOURNAL OF APPLIED PROBABILITY, 2002, 39 (04) :889-895
[6]  
Carr P, 1999, J COMPUT FINANC, V2, P61, DOI DOI 10.21314/JCF.1999.043
[7]   RISK THEORY FOR THE COMPOUND POISSON-PROCESS THAT IS PERTURBED BY DIFFUSION [J].
DUFRESNE, F ;
GERBER, HU .
INSURANCE MATHEMATICS & ECONOMICS, 1991, 10 (01) :51-59
[8]  
Furrer H., 1998, SCAND ACTUAR J, P59
[10]  
Lebedev N.N., 1972, Dover Books on Math- ematics