Large time asymptotics for the higher-order nonlinear nonlocal Schrodinger equation

被引:0
作者
Juarez-Campos, Beatriz [1 ]
Naumkin, Pavel I. [2 ]
机构
[1] Inst Tecnol Morelia, Ave Tecnol 1500, Morelia 58120, Michoacan, Mexico
[2] Ctr Ciencias Matemat, UNAM Campus Morelia,AP 61-3 Xangari, Morelia 58089, Michoacan, Mexico
关键词
Nonlinear nonlocal Schrodinger equation; Modified scattering; Factorization Techniques; CAUCHY-PROBLEM; DISPERSION; GAIN;
D O I
10.1016/j.na.2020.112238
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the Cauchy problem for the higher-order nonlinear nonlocal Schrodinger equation in one space dimension {i partial derivative(t)u - Lambda u = lambda vertical bar u vertical bar(3) u, t > 0, x is an element of R, u (0, x) = u(0)(x) , x is an element of R, where lambda > 0, and the linear operator Lambda u = Sigma(5)(j=3) 1/j vertical bar partial derivative(x)vertical bar(j) u. Our purpose in this paper is to prove the large time asymptotic behaviour of solutions for the defocusing case lambda > 0 with a logarithmic correction under the nonzero mass condition integral(R) u(0) (x) d(x) not equal 0. (C) 2020 Elsevier Ltd. All rights reserved.
引用
收藏
页数:26
相关论文
共 34 条
[1]  
[Anonymous], 1989, ENCY MATH SCI
[2]  
[Anonymous], 1997, DIFFERENTIAL INTEGRA
[3]   Dispersive blow-up for nonlinear Schrodinger equations revisited [J].
Bona, J. L. ;
Ponce, G. ;
Saut, J-C ;
Sparber, C. .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2014, 102 (04) :782-811
[4]   DISPERSIVE BLOWUP OF SOLUTIONS OF GENERALIZED KORTEWEG-DEVRIES EQUATIONS [J].
BONA, JL ;
SAUT, JC .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1993, 103 (01) :3-57
[5]   CLASS OF BOUNDED PSEUDODIFFERENTIAL OPERATORS [J].
CALDERON, AP ;
VAILLANCOURT, R .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1972, 69 (05) :1185-+
[6]  
Carvajal X., 2003, DIFFERENTIAL INTEGRA, V16, P1111
[7]  
Carvajal X, 2004, ELECTRON J DIFFER EQ
[8]  
Cazenave T., 2003, COURANT LECT NOTES M
[9]  
Coifman RR., 1978, Au dela des operateurs pseudo-differentiels, P185
[10]  
Constantin P., 1988, J. Amer. Math. Soc., V1, P413