Effects of graft polymer compatibilizers in blends of cellulose triacetate and poly(lactic acid)

被引:10
作者
Volokhova, Anastasia S. [1 ,2 ]
Waugh, John B. [1 ,2 ]
Arrington, Kyle J. [1 ,2 ]
Matson, John B. [1 ,2 ]
机构
[1] Virginia Tech, Dept Chem, 1040 Drillfield Dr, Blacksburg, VA 24061 USA
[2] Virginia Tech, Macromol Innovat Inst, 1040 Drillfield Dr, Blacksburg, VA 24061 USA
关键词
compatibilizer; graft polymer; CTA-g-PLA; polymer blends; thermomechanical properties; THERMAL-PROPERTIES; FIBERS; ACETATE;
D O I
10.1002/pi.5820
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
Blends of cellulose triacetate (CTA) and poly(l-lactic acid) (PLLA) were prepared using graft polymer compatibilizers. The graft polymers were synthesized using a grafting-from approach via ring-opening polymerization of l- and d,l-lactide initiated from free hydroxyl groups along the CTA backbone. The blends incorporating either 1, 2.5 or 5% of each of the two graft polymer compatibilizers by weight in a 20:80 mixture of CTA:PLLA were solution-cast to yield films. Characterization of graft polymers included the use of H-1 NMR spectroscopy, differential scanning calorimetry (DSC) and thermogravimetric analysis. Mechanical properties of the compatibilized films were evaluated using tensile testing, and thermomechanical properties were analyzed using dynamic mechanical analysis (DMA). The compatibilized films exhibited greater tensile stress at yield than the uncompatibilized films for both types of compatibilizers, but no statistically significant changes were observed in modulus or strain at break, although modulus trended higher in compatibilized films. Stereochemical differences in tensile performance were statistically insignificant, though some differences in thermal behavior were observed. DMA and DSC revealed that crystallization of PLLA was altered by the addition of compatibilizer and CTA. (c) 2019 Society of Chemical Industry
引用
收藏
页码:1263 / 1270
页数:8
相关论文
共 37 条
[1]   Crystallization kinetics of poly(lactic acid)-talc composites [J].
Battegazzore, D. ;
Bocchini, S. ;
Frache, A. .
EXPRESS POLYMER LETTERS, 2011, 5 (10) :849-858
[2]   Poly(lactic acid)-Mass production, processing, industrial applications, and end of life [J].
Castro-Aguirre, E. ;
Iniguez-Franco, F. ;
Samsudin, H. ;
Fang, X. ;
Auras, R. .
ADVANCED DRUG DELIVERY REVIEWS, 2016, 107 :333-366
[3]   Green chemistry and the biorefinery: A partnership for a sustainable future [J].
Clark, James H. ;
Budarin, Vitaly ;
Deswarte, Fabien E. I. ;
Hardy, Jeffrey J. E. ;
Kerton, Fran M. ;
Hunt, Andrew J. ;
Luque, Rafael ;
Macquarrie, Duncan J. ;
Milkowski, Krzysztof ;
Rodriguez, Aitana ;
Samuel, Owain ;
Tavener, Stewart J. ;
White, Robin J. ;
Wilson, Ashley J. .
GREEN CHEMISTRY, 2006, 8 (10) :853-860
[4]   Sustainable Polyester Elastomers from Lactones: Synthesis, Properties, and Enzymatic Hydrolyzability [J].
De Hoe, Guilhem X. ;
Zumstein, Michael T. ;
Tiegs, Brandon J. ;
Brutman, Jacob P. ;
McNeill, Kristopher ;
Sander, Michael ;
Coates, Geoffrey W. ;
Hillmyer, Marc A. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2018, 140 (03) :963-973
[5]  
Dugan J., 2001, International Non-woven Journal, V10, P29, DOI [10.1177/1558925001OS-01000308, DOI 10.1177/1558925001OS-01000308]
[6]  
Dumitriu S., 2017, Polysaccharides in medicinal applications
[7]   Production, use, and fate of all plastics ever made [J].
Geyer, Roland ;
Jambeck, Jenna R. ;
Law, Kara Lavender .
SCIENCE ADVANCES, 2017, 3 (07)
[8]   Prospects for future applications of cellulose acetate [J].
Glasser, WG .
MACROMOLECULAR SYMPOSIA, 2004, 208 :371-394
[9]   Compatibilization in bio-based and biodegradable polymer blends [J].
Imre, B. ;
Pukanszky, B. .
EUROPEAN POLYMER JOURNAL, 2013, 49 (06) :1215-1233
[10]   Plastic waste inputs from land into the ocean [J].
Jambeck, Jenna R. ;
Geyer, Roland ;
Wilcox, Chris ;
Siegler, Theodore R. ;
Perryman, Miriam ;
Andrady, Anthony ;
Narayan, Ramani ;
Law, Kara Lavender .
SCIENCE, 2015, 347 (6223) :768-771