A stable, polynomial-time algorithm for the eigenpair problem

被引:14
作者
Armentano, Diego [1 ]
Beltran, Carlos [2 ]
Buergisser, Peter [3 ]
Cucker, Felipe [4 ]
Shub, Michael [5 ]
机构
[1] Univ Republica, Montevideo, Uruguay
[2] Univ Cantabria, Santander, Spain
[3] Tech Univ Berlin, Berlin, Germany
[4] City Univ Hong Kong, Hong Kong, Hong Kong, Peoples R China
[5] CUNY, New York, NY 10021 USA
关键词
Eigenvalue computations; homotopy methods; EIGENVALUE PROBLEMS; BEZOUTS THEOREM; HOMOTOPY METHOD; COMPLEXITY;
D O I
10.4171/JEMS/789
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We describe algorithms for computing eigenpairs (eigenvalue-eigenvector pairs) of a complex n x n matrix A. These algorithms are numerically stable, strongly accurate, and theoretically efficient (i.e., polynomial-time). We do not believe they outperform in practice the algorithms currently used for this computational problem. The merit of our paper is to give a positive answer to a long-standing open problem in numerical linear algebra.
引用
收藏
页码:1375 / 1437
页数:63
相关论文
共 58 条
[1]   Probabilistic Analysis of the Grassmann Condition Number [J].
Amelunxen, Dennis ;
Buergisser, Peter .
FOUNDATIONS OF COMPUTATIONAL MATHEMATICS, 2015, 15 (01) :3-51
[2]   Condition Length and Complexity for the Solution of Polynomial Systems [J].
Armentano, Diego ;
Beltran, Carlos ;
Buergisser, Peter ;
Cucker, Felipe ;
Shub, Michael .
FOUNDATIONS OF COMPUTATIONAL MATHEMATICS, 2016, 16 (06) :1401-1422
[3]   A Randomized Homotopy for the Hermitian Eigenpair Problem [J].
Armentano, Diego ;
Cucker, Felipe .
FOUNDATIONS OF COMPUTATIONAL MATHEMATICS, 2015, 15 (01) :281-312
[4]   Complexity of Path-Following Methods for the Eigenvalue Problem [J].
Armentano, Diego .
FOUNDATIONS OF COMPUTATIONAL MATHEMATICS, 2014, 14 (02) :185-236
[5]   Stochastic perturbations and smooth condition numbers [J].
Armentano, Diego .
JOURNAL OF COMPLEXITY, 2010, 26 (02) :161-171
[6]   An inverse free parallel spectral divide and conquer algorithm for nonsymmetric eigenproblems [J].
Bai, ZJ ;
Demmel, J ;
Gu, M .
NUMERISCHE MATHEMATIK, 1997, 76 (03) :279-308
[7]  
BATTERSON S, 1990, MATH COMPUT, V55, P169, DOI 10.1090/S0025-5718-1990-1023041-4
[8]   CONVERGENCE OF THE FRANCIS SHIFTED QR ALGORITHM ON NORMAL MATRICES [J].
BATTERSON, S .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1994, 207 :181-195
[9]  
Batterson S., 1989, APPL MATH LETT, V2, P19, DOI DOI 10.1016/0893-9659(89)90107-9.MR989851
[10]   On the numerical condition of a generalized Hankel eigenvalue problem [J].
Beckermann, B. ;
Golub, G. H. ;
Labahn, G. .
NUMERISCHE MATHEMATIK, 2007, 106 (01) :41-68