Analysis of the RF and noise performance of junctionless MOSFETs using Monte Carlo simulation

被引:16
作者
Chen, Yongbo [1 ]
Xu, Ruimin [1 ]
机构
[1] Univ Elect Sci & Technol China, Sch Elect Engn, EHF Key Lab Fundamental Sci, Chengdu 611731, Peoples R China
关键词
junctionless MOSFET; Monte Carlo simulation; small-signal equivalent circuit; analog/RF; noise; FIELD-EFFECT TRANSISTORS; SIGNAL EQUIVALENT-CIRCUIT; INVERSION; DEVICES; DESIGN;
D O I
10.1002/jnm.1938
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The dynamic characteristics and high-frequency noise performance of junctionless (JL) metal-oxide-semiconductor field-effect transistors (MOSFETs) are investigated using a full-band Monte Carlo simulator. A detailed comparison with conventional inversion mode (IM) MOSFETs is presented. The results of the radio frequency performance indicate that, compared with the traditional IM MOSFET, the JL transistor exhibits lower drain current (I-ds), transconductance (g(m)), and cut-off frequency (f(t)) because of its lower electron velocity in the high doping channel. However, owing to a reduced output conductance (g(ds)) and a larger C-gs/C-gd ratio (C-gs is the gate-to-source capacitance; C-gd is the gate-to-drain capacitance), the JL MOSFET presents an improvement in the intrinsic voltage gain (A(vo)) and maximum frequency of oscillation (f(max)) in comparison with the IM transistor, which makes it be a viable option for the high-voltage and power gain analog/radio frequency applications. The results of the noise characteristics show that the JL MOSFET exhibits higher minimum noise figure (NFmin) and equivalent noise resistance (R-n), indicating an inferior noise performance. Copyright (C) 2013 John Wiley & Sons, Ltd.
引用
收藏
页码:822 / 833
页数:12
相关论文
共 39 条
[1]  
[Anonymous], 2010, 2010 14 INT WORKSHOP, DOI DOI 10.1109/IWCE.2010.5677969
[2]   DOUBLE-GATE SILICON-ON-INSULATOR TRANSISTOR WITH VOLUME INVERSION - A NEW DEVICE WITH GREATLY ENHANCED PERFORMANCE [J].
BALESTRA, F ;
CRISTOLOVEANU, S ;
BENACHIR, M ;
BRINI, J ;
ELEWA, T .
IEEE ELECTRON DEVICE LETTERS, 1987, 8 (09) :410-412
[3]   Scaling of Trigate Junctionless Nanowire MOSFET With Gate Length Down to 13 nm [J].
Barraud, S. ;
Berthome, M. ;
Coquand, R. ;
Casse, M. ;
Ernst, T. ;
Samson, M. -P. ;
Perreau, P. ;
Bourdelle, K. K. ;
Faynot, O. ;
Poiroux, T. .
IEEE ELECTRON DEVICE LETTERS, 2012, 33 (09) :1225-1227
[4]   BROAD-BAND DETERMINATION OF THE FET SMALL-SIGNAL EQUIVALENT-CIRCUIT [J].
BERROTH, M ;
BOSCH, R .
IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, 1990, 38 (07) :891-895
[5]   NOISE MODELING AND MEASUREMENT TECHNIQUES [J].
CAPPY, A .
IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, 1988, 36 (01) :1-10
[6]  
Chen Y-B, 2013, INT J NUMER MODELL
[7]   Accurate Distributed and Semidistributed Models of Field Effect Transistors for Millimeter Wave Applications [J].
Chen, Yongbo ;
Guo, Yunchuan ;
Huang, Wen ;
Xu, Ruimin .
INTERNATIONAL JOURNAL OF RF AND MICROWAVE COMPUTER-AIDED ENGINEERING, 2011, 21 (03) :272-278
[8]   RF Performance and Small-Signal Parameter Extraction of Junctionless Silicon Nanowire MOSFETs [J].
Cho, Seongjae ;
Kim, Kyung Rok ;
Park, Byung-Gook ;
Kang, In Man .
IEEE TRANSACTIONS ON ELECTRON DEVICES, 2011, 58 (05) :1388-1396
[9]  
Choi J, 2012, APPL PHYS EXPRESS, V5
[10]   Junctionless Nanowire Transistor (JNT): Properties and design guidelines [J].
Colinge, J. P. ;
Kranti, A. ;
Yan, R. ;
Lee, C. W. ;
Ferain, I. ;
Yu, R. ;
Akhavan, N. Dehdashti ;
Razavi, P. .
SOLID-STATE ELECTRONICS, 2011, 65-66 :33-37