Optimal binary one-ended codes

被引:1
|
作者
Kukorelly, Z [1 ]
机构
[1] Univ Calif San Diego, Informat Coding Lab, La Jolla, CA 92093 USA
关键词
one-ended codes; optimal codes; prefix-free codes; variable-length coding;
D O I
10.1109/TIT.2002.1013157
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Binary prefix-free codes in which all codewords end with a "1" have been introduced by Berger and Yeung. A recursive method is given here for the construction of all optimal "1"-ended codes with n codewords. It is shown that the set of codes obtained by the construction contains only optimal codes. We also compute recursively the number of essentially different optimal "1"-ended codes with n codewords and show that their number grows faster than any polynomial in n.
引用
收藏
页码:2125 / 2132
页数:8
相关论文
共 50 条
  • [31] A dynamic programming algorithm for constructing optimal "1"-ended binary prefix-free codes
    Chan, SL
    Golin, MJ
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2000, 46 (04) : 1637 - 1644
  • [32] PARP inhibition disrupts repair of one-ended DNA double-strand breaks
    Sakasai, Ryo
    Iwabuchi, Kuniyoshi
    CANCER SCIENCE, 2018, 109 : 577 - 577
  • [33] ANIONIC-POLYMERIZATION OF THE STRONTIUM SALT OF ONE-ENDED LIVING POLYSTYRENE IN TETRAHYDROFURAN AND TETRAHYDROPYRAN
    DESMEDT, C
    VANBEYLEN, M
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 1980, 179 (MAR): : 97 - POLY
  • [34] ROBUSTLY OPTIMAL RATE ONE-HALF BINARY CONVOLUTIONAL CODES
    JOHANNESSON, R
    IEEE TRANSACTIONS ON INFORMATION THEORY, 1975, 21 (04) : 464 - 468
  • [35] OPTIMUM 1-ENDED BINARY PREFIX CODES
    BERGER, T
    YEUNG, RW
    IEEE TRANSACTIONS ON INFORMATION THEORY, 1990, 36 (06) : 1435 - 1441
  • [36] The proper Lusternik-Schnirelmann category of semistable one-ended 3-manifolds
    Cardenas, M.
    Lasheras, F. F.
    Quintero, A.
    TOPOLOGY AND ITS APPLICATIONS, 2013, 160 (05) : 720 - 729
  • [37] OPTIMUM 1-ENDED BINARY PREFIX CODES
    BERGER, T
    YEUNG, R
    LECTURE NOTES IN COMPUTER SCIENCE, 1988, 311 : 68 - 75
  • [38] Optimal binary LCD codes
    Stefka Bouyuklieva
    Designs, Codes and Cryptography, 2021, 89 : 2445 - 2461
  • [39] Locality of optimal binary codes
    Fu, Qiang
    Li, Ruihu
    Guo, Luobin
    Lv, Liangdong
    FINITE FIELDS AND THEIR APPLICATIONS, 2017, 48 : 371 - 394
  • [40] Optimal binary LCD codes
    Bouyuklieva, Stefka
    DESIGNS CODES AND CRYPTOGRAPHY, 2021, 89 (11) : 2445 - 2461