Consistency of the α-trimming of a probability. Applications to central regions

被引:4
作者
Cascos, Ignacio [1 ]
Lopez-Dia, Miguel [2 ,3 ]
机构
[1] Univ Carlos III Madrid, Dept Estadist, E-28911 Madrid, Spain
[2] Univ Oviedo, Fac Ciencias, Dept Estadist, E-33007 Oviedo, Spain
[3] Univ Oviedo, Fac Ciencias, IO & DM, E-33007 Oviedo, Spain
关键词
alpha-trimming of a probability; depth-trimmed regions; integral trimmed regions; weak topology;
D O I
10.3150/07-BEJ109
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The sequence of alpha-trimmings of empirical probabilities is shown to converge, in the Painleve-Kuratowski sense, on the class of probability measures endowed with the weak topology, to the alpha-trimming of the population probability. Such a result is applied to the study of the asymptotic behaviour of central regions based on the trimming of a probability.
引用
收藏
页码:580 / 592
页数:13
相关论文
共 12 条
[1]   Coherent measures of risk [J].
Artzner, P ;
Delbaen, F ;
Eber, JM ;
Heath, D .
MATHEMATICAL FINANCE, 1999, 9 (03) :203-228
[2]  
Billingsley P., 1999, CONVERGENCE PROBABIL
[3]   Integral trimmed regions [J].
Cascos, I ;
López-Díaz, M .
JOURNAL OF MULTIVARIATE ANALYSIS, 2005, 96 (02) :404-424
[4]   Multivariate risks and depth-trimmed regions [J].
Cascos, Ignacio ;
Molchanov, Ilya .
FINANCE AND STOCHASTICS, 2007, 11 (03) :373-397
[5]  
Durrett R, 1996, PROBABILITY THEORY E
[6]   MINIMAX TESTS AND NEYMAN-PEARSON LEMMA FOR CAPACITIES [J].
HUBER, PJ ;
STRASSEN, V .
ANNALS OF STATISTICS, 1973, 1 (02) :251-263
[7]  
Koshevoy G, 1997, ANN STAT, V25, P1998
[8]   HALF-PLANE TRIMMING FOR BIVARIATE DISTRIBUTIONS [J].
MASSE, JC ;
THEODORESCU, R .
JOURNAL OF MULTIVARIATE ANALYSIS, 1994, 48 (02) :188-202
[9]   The Glivenko-Cantelli problem, ten years later [J].
Talagrand, M .
JOURNAL OF THEORETICAL PROBABILITY, 1996, 9 (02) :371-384
[10]  
van der Vaart A, 2000, PROG PROBAB, V47, P115