Controlling entropic uncertainty bound through memory effects

被引:35
作者
Karpat, Goktug [1 ,2 ]
Piilo, Jyrki [1 ]
Maniscalco, Sabrina [1 ]
机构
[1] Univ Turku, Dept Phys & Astron, Turku Ctr Quantum Phys, FI-20014 Turun, Finland
[2] Univ Estadual Paulista, UNESP, Fac Ciencias, BR-17033360 Bauru, SP, Brazil
基金
巴西圣保罗研究基金会;
关键词
QUANTUM MEMORY; PRINCIPLE; ENTANGLEMENT; INFORMATION;
D O I
10.1209/0295-5075/111/50006
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
One of the defining traits of quantum mechanics is the uncertainty principle which was originally expressed in terms of the standard deviation of two observables. Alternatively, it can be formulated using entropic measures, and can also be generalized by including a memory particle that is entangled with the particle to be measured. Here we consider a realistic scenario where the memory particle is an open system interacting with an external environment. Through the relation of conditional entropy to mutual information, we provide a link between memory effects and the rate of change of conditional entropy controlling the lower bound of the entropic uncertainty relation. Our treatment reveals that the memory effects stemming from the non-Markovian nature of quantum dynamical maps directly control the lower bound of the entropic uncertainty relation in a general way, independently of the specific type of interaction between the memory particle and its environment. Copyright (C) EPLA, 2015
引用
收藏
页数:6
相关论文
共 34 条
[11]   UNCERTAINTY IN QUANTUM MEASUREMENTS [J].
DEUTSCH, D .
PHYSICAL REVIEW LETTERS, 1983, 50 (09) :631-633
[12]   Non-Markovianity through Accessible Information [J].
Fanchini, F. F. ;
Karpat, G. ;
Cakmak, B. ;
Castelano, L. K. ;
Aguilar, G. H. ;
Jimenez Farias, O. ;
Walborn, S. P. ;
Souto Ribeiro, P. H. ;
de Oliveira, M. C. .
PHYSICAL REVIEW LETTERS, 2014, 112 (21)
[13]   Probing the degree of non-Markovianity for independent and common environments [J].
Fanchini, Felipe F. ;
Karpat, Goktug ;
Castelano, Leonardo K. ;
Rossatto, Daniel Z. .
PHYSICAL REVIEW A, 2013, 88 (01)
[14]   Non-Markovianity through flow of information between a system and an environment [J].
Haseli, S. ;
Karpat, G. ;
Salimi, S. ;
Khorashad, A. S. ;
Fanchini, F. F. ;
Cakmak, B. ;
Aguilar, G. H. ;
Walborn, S. P. ;
Souto Ribeiro, P. H. .
PHYSICAL REVIEW A, 2014, 90 (05)
[15]  
Heisenberg W., 1927, Z. Phys, V43, P173, DOI [10.1007/BF01397280, DOI 10.1007/BF01397280]
[16]   Partial quantum information [J].
Horodecki, M ;
Oppenheim, J ;
Winter, A .
NATURE, 2005, 436 (7051) :673-676
[17]   Alternative non-Markovianity measure by divisibility of dynamical maps [J].
Hou, S. C. ;
Yi, X. X. ;
Yu, S. X. ;
Oh, C. H. .
PHYSICAL REVIEW A, 2011, 83 (06)
[18]   Quantum-memory-assisted entropic uncertainty principle, teleportation, and entanglement witness in structured reservoirs [J].
Hu, Ming-Liang ;
Fan, Heng .
PHYSICAL REVIEW A, 2012, 86 (03)
[19]   Non-Markovianity-Assisted Steady State Entanglement [J].
Huelga, Susana F. ;
Rivas, Angel ;
Plenio, Martin B. .
PHYSICAL REVIEW LETTERS, 2012, 108 (16)
[20]  
Kennard E.H., 1927, Zeitschrift fur Physik, V44, P326, DOI [DOI 10.1007/BF01391200, 10.1007/BF01391200]