Controlling entropic uncertainty bound through memory effects

被引:35
作者
Karpat, Goktug [1 ,2 ]
Piilo, Jyrki [1 ]
Maniscalco, Sabrina [1 ]
机构
[1] Univ Turku, Dept Phys & Astron, Turku Ctr Quantum Phys, FI-20014 Turun, Finland
[2] Univ Estadual Paulista, UNESP, Fac Ciencias, BR-17033360 Bauru, SP, Brazil
基金
巴西圣保罗研究基金会;
关键词
QUANTUM MEMORY; PRINCIPLE; ENTANGLEMENT; INFORMATION;
D O I
10.1209/0295-5075/111/50006
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
One of the defining traits of quantum mechanics is the uncertainty principle which was originally expressed in terms of the standard deviation of two observables. Alternatively, it can be formulated using entropic measures, and can also be generalized by including a memory particle that is entangled with the particle to be measured. Here we consider a realistic scenario where the memory particle is an open system interacting with an external environment. Through the relation of conditional entropy to mutual information, we provide a link between memory effects and the rate of change of conditional entropy controlling the lower bound of the entropic uncertainty relation. Our treatment reveals that the memory effects stemming from the non-Markovian nature of quantum dynamical maps directly control the lower bound of the entropic uncertainty relation in a general way, independently of the specific type of interaction between the memory particle and its environment. Copyright (C) EPLA, 2015
引用
收藏
页数:6
相关论文
共 34 条
[1]   Comparative study of non-Markovianity measures in exactly solvable one- and two-qubit models [J].
Addis, Carole ;
Bylicka, Bogna ;
Chruscinski, Dariusz ;
Maniscalco, Sabrina .
PHYSICAL REVIEW A, 2014, 90 (05)
[2]   The uncertainty principle in the presence of quantum memory [J].
Berta, Mario ;
Christandl, Matthias ;
Colbeck, Roger ;
Renes, Joseph M. ;
Renner, Renato .
NATURE PHYSICS, 2010, 6 (09) :659-662
[3]  
Bialynicki-Birula I., 2011, STAT COMPLEXITY
[4]  
Breuer H.-P., 2007, THEORY OPEN QUANTUM, DOI [DOI 10.1093/ACPROF:OSO/9780199213900.001.0001, 10.1093/acprof:oso/9780199213900.001.0001]
[5]   Measure for the Degree of Non-Markovian Behavior of Quantum Processes in Open Systems [J].
Breuer, Heinz-Peter ;
Laine, Elsi-Mari ;
Piilo, Jyrki .
PHYSICAL REVIEW LETTERS, 2009, 103 (21)
[6]   Non-Markovianity and reservoir memory of quantum channels: a quantum information theory perspective [J].
Bylicka, B. ;
Chruscinski, D. ;
Maniscalco, S. .
SCIENTIFIC REPORTS, 2014, 4
[7]   The role of non-equilibrium vibrational structures in electronic coherence and recoherence in pigment-protein complexes [J].
Chin, A. W. ;
Prior, J. ;
Rosenbach, R. ;
Caycedo-Soler, F. ;
Huelga, S. F. ;
Plenio, M. B. .
NATURE PHYSICS, 2013, 9 (02) :113-118
[8]   Quantum Metrology in Non-Markovian Environments [J].
Chin, Alex W. ;
Huelga, Susana F. ;
Plenio, Martin B. .
PHYSICAL REVIEW LETTERS, 2012, 109 (23)
[9]   Degree of Non-Markovianity of Quantum Evolution [J].
Chruscinski, Dariusz ;
Maniscalco, Sabrina .
PHYSICAL REVIEW LETTERS, 2014, 112 (12)
[10]   Depolarizing channel as a completely positive map with memory -: art. no. 010304 [J].
Daffer, S ;
Wódkiewicz, K ;
Cresser, JD ;
McIver, JK .
PHYSICAL REVIEW A, 2004, 70 (01) :010304-1