Existence and uniqueness theorems for fourth-order singular boundary value problems

被引:18
作者
Cui, Yujun [1 ]
Zou, Yumei [1 ]
机构
[1] Shandong Univ Sci & Technol, Dept Math, Qingdao 266510, Peoples R China
基金
美国国家科学基金会;
关键词
Fourth-order boundary value problem; Singular; Existence; Uniqueness; e-Norm;
D O I
10.1016/j.camwa.2009.07.041
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
By constructing a special cone and using cone compression and expansion fixed point theorem, the existence and uniqueness are established for the following singular fourth-order boundary value problems: x((4)) (t) = f(t, x(t), -x '' (t)), t is an element of (0, 1), x(0) = x(1) = x ''(0) = x ''(1) = 0, where f(t, x, y) may be singular at t = 0.1; x = 0 and y = 0. (C) 2009 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1449 / 1456
页数:8
相关论文
共 7 条
[1]  
Agarwal R., 1989, Differ. Integr. Equ., V2, P91
[2]   Positive solutions for nonlinear singular boundary value problems [J].
Agarwal, RP ;
Wong, FH ;
Lian, WC .
APPLIED MATHEMATICS LETTERS, 1999, 12 (02) :115-120
[3]   EXISTENCE FOR A 4TH-ORDER BOUNDARY-VALUE PROBLEM UNDER A 2-PARAMETER NONRESONANCE CONDITION [J].
DELPINO, MA ;
MANASEVICH, RF .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1991, 112 (01) :81-86
[4]  
Guo D., 1988, Nonlinear Problems in Abstract Cones
[5]   Nonresonant singular fourth-order boundary value problems [J].
Jiang, DQ ;
Liu, HZ ;
Xu, XJ .
APPLIED MATHEMATICS LETTERS, 2005, 18 (01) :69-75
[6]  
Lin XN, 2006, J COMPUT APPL MATH, V196, P155, DOI 10.1016/j.cam.2005.08.016
[7]  
Zhang B., 2000, NONLINEAR STUD, V7, P70